Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational Study on Optoelectronic Property Tuning of Oligothiophenes via Chemical Modifications for Solar Cell Applications
Corresponding Author(s) : Francisco C. Franco
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
Chemical modifications in conjugated polymers offers the possibility of tuning its optoelectronic properties for various applications. In this report, the optoelectronic properties of chemically modified oligomers based on poly(3-hexylthiophene-2,5-diyl) (P3HT) were investigated via DFT and TDDFT. The study was carried out by replacing the hydrogen in the 3’-position of the bithiophene monomer unit with several substituents. The polymer properties were predicted via oligomer approach where n, was varied from 1 to 10. Various electronic and optical properties were calculated: EHOMO, ELUMO, EGap, first singlet excitation energy (EOpt) and exciton binding energy (EB). Several substituents: -CN and -F were observed to have significantly lower EHOMO/ELUMO values while having similar EGap compared to P3HT. Relevant solar cell characteristics were predicted and show that P3HT-CN and P3HT-F have significantly improved open-circuit voltage (VOC). The results suggest that P3HT-CN and P3HT-F may have overall better solar cell characteristics than P3HT.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Roesch, K.R. Eberhardt, S. Engmann, G. Gobsch and H. Hoppe, Sol. Energy Mater. Sol. Cells, 117, 59 (2013); https://doi.org/10.1016/j.solmat.2013.05.013.
- E. Zhou, K. Hashimoto and K. Tajima, Polymer, 54, 6501 (2013); https://doi.org/10.1016/j.polymer.2013.09.058.
- T. Ameri, P. Khoram, J. Min and C.J. Brabec, Adv. Mater., 25, 4245 (2013); https://doi.org/10.1002/adma.201300623.
- A. Blakers, N. Zin, K. McIntosh and K. Fong, Energy Procedia, 33, 1 (2013); https://doi.org/10.1016/j.egypro.2013.05.033.
- P.J. Cousins, D.D. Smith, H.C. Luan, J. Manning, T.D. Dennis, A. Waldhauer, K.E. Wilson, G. Harley and W.P. Mulligan, Proceedings of 33rd IEEE Photovoltaic Specialists Conference, p. 275 (2010).
- H. Heliated Gmb, Heliatek Sets New Organic Photovoltaic World Record Efficiency of 13.2, (http://www.heliatek.com/en/press/pressreleases/details/heliated-sets-new-organic-photovoltaic-world-recordefficiency-of-13-2).
- J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and H. Yan, Nat. Energy, 1, 15027 (2016); https://doi.org/10.1038/nenergy.2015.27.
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo and S.I. Seok, Science, 348, 1234 (2015); https://doi.org/10.1126/science.aaa9272.
- J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, ACS Nano, 8, 1674 (2014); https://doi.org/10.1021/nn406020d.
- T.P. Kaloni, M. Upadhyay Kahaly, R. Faccio and U. Schwingenschlogl, Carbon, 64, 281 (2013); https://doi.org/10.1016/j.carbon.2013.07.062.
- Y.C. Cheng, T.P. Kaloni, Z.Y. Zhu and U. Schwingenschlogl, Appl. Phys. Lett., 101, 73110 (2012); https://doi.org/10.1063/1.4746261.
- Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T.P. Russell and Y. Chen, Nat. Photonics, 9, 35 (2014); https://doi.org/10.1038/nphoton.2014.269.
- F. Franco Jr. and A.A. Padama, Polymer, 97, 55 (2016); https://doi.org/10.1016/j.polymer.2016.05.025.
- E.F. Oliveira and F.C. Lavarda, Mater. Chem. Phys., 148, 923 (2014); https://doi.org/10.1016/j.matchemphys.2014.09.002.
- H. Ullah, A.-H.A. Shah, S. Bilal and K. Ayub, J. Phys. Chem. C, 118, 17819 (2014); https://doi.org/10.1021/jp505626d.
- H. Sahu and A. Panda, Macromolecules, 46, 844 (2013); https://doi.org/10.1021/ma3024409.
- L. Zhang, K. Pei, M. Yu, Y. Huang, H. Zhao, M. Zeng, Y. Wang and J. Gao, J. Phys. Chem. C, 116, 26154 (2012); https://doi.org/10.1021/jp306656c.
- M. Qiu, R.G. Brandt, Y. Niu, X. Bao, D. Yu, N. Wang, L. Han, L. Yu, S. Xia and R. Yang, J. Phys. Chem. C, 119, 8501 (2015); https://doi.org/10.1021/acs.jpcc.5b01071.
- R.A. Street, S.A. Hawks, P.P. Khlyabich, G. Li, B.J. Schwartz, B.C. Thompson and Y. Yang, J. Phys. Chem. C, 118, 21873 (2014); https://doi.org/10.1021/jp507097h.
- A. Dkhissi, Synth. Met., 161, 1441 (2011); https://doi.org/10.1016/j.synthmet.2011.04.003.
- M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger and C.J. Brabec, Adv. Mater., 18, 789 (2006); https://doi.org/10.1002/adma.200501717.
- G.R. Hutchison, M.A. Ratner and T.J. Marks, J. Am. Chem. Soc., 127, 2339 (2005); https://doi.org/10.1021/ja0461421.
- L. Pandey, C. Risko, J.E. Norton and J.L. Bredas, Macromolecules, 45, 6405 (2012); https://doi.org/10.1021/ma301164e.
- M. Moral, A. Garzon, G. Garcia, J.M. Granadino-Roldan and M. Fernandez-Gomez, J. Phys. Chem. C, 119, 4588 (2015); https://doi.org/10.1021/jp5120948.
- J. Wojtkiewicz, A. Iwan, M. Pilch, B. Boharewicz, K. Wójcik, I. Tazbir and M. Kaminska, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 208 (2017); https://doi.org/10.1016/j.saa.2017.03.046.
- X.-H. Xie, W. Shen, R.-X. He and M. Li, Bull. Korean Chem. Soc., 34, 2995 (2013); https://doi.org/10.5012/bkcs.2013.34.10.2995.
- F. Franco Jr., Mol. Simul., 43, 222 (2017); https://doi.org/10.1080/08927022.2016.1250267.
- J.J.P. Stewart, MOPAC2016, Computational Chemistry, Colorado Springs, CO, USA (2016).
- A.A. Granovsky, GAMESS/Firefly version 8.1 (2013); http://classic.chem.msu.su/gran/gamess/index.html.
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112.
- J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu and Z.Q. Yang, J. Phys. Chem. A, 110, 12005 (2006); https://doi.org/10.1021/jp063669m.
- J.M. Toussaint and J.L. Bredas, Synth. Met., 61, 103 (1993); https://doi.org/10.1016/0379-6779(93)91205-G.
- F. Wu, L. Chen, H. Wang and Y. Chen, J. Phys. Chem. C, 117, 9581 (2013); https://doi.org/10.1021/jp401552f.
- T.M. Pappenfus, J.A. Schmidt, R.E. Koehn and J.D. Alia, Macromolecules, 44, 2354 (2011); https://doi.org/10.1021/ma1026498.
- J. Roncali, Macromol. Rapid Commun., 28, 1761 (2007); https://doi.org/10.1002/marc.200700345.
- F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, Springer, New York, edn 5, p. 339 (2007).
- F. Franco Jr. and A.A. Padama, J. Phys. Soc. Jpn., 86, 064802 (2017); https://doi.org/10.7566/JPSJ.86.064802.
- M. Reyes-Reyes, K. Kim and D.L. Carroll, Appl. Phys. Lett., 87, 83506 (2005); https://doi.org/10.1063/1.2006986.
References
R. Roesch, K.R. Eberhardt, S. Engmann, G. Gobsch and H. Hoppe, Sol. Energy Mater. Sol. Cells, 117, 59 (2013); https://doi.org/10.1016/j.solmat.2013.05.013.
E. Zhou, K. Hashimoto and K. Tajima, Polymer, 54, 6501 (2013); https://doi.org/10.1016/j.polymer.2013.09.058.
T. Ameri, P. Khoram, J. Min and C.J. Brabec, Adv. Mater., 25, 4245 (2013); https://doi.org/10.1002/adma.201300623.
A. Blakers, N. Zin, K. McIntosh and K. Fong, Energy Procedia, 33, 1 (2013); https://doi.org/10.1016/j.egypro.2013.05.033.
P.J. Cousins, D.D. Smith, H.C. Luan, J. Manning, T.D. Dennis, A. Waldhauer, K.E. Wilson, G. Harley and W.P. Mulligan, Proceedings of 33rd IEEE Photovoltaic Specialists Conference, p. 275 (2010).
H. Heliated Gmb, Heliatek Sets New Organic Photovoltaic World Record Efficiency of 13.2, (http://www.heliatek.com/en/press/pressreleases/details/heliated-sets-new-organic-photovoltaic-world-recordefficiency-of-13-2).
J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and H. Yan, Nat. Energy, 1, 15027 (2016); https://doi.org/10.1038/nenergy.2015.27.
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo and S.I. Seok, Science, 348, 1234 (2015); https://doi.org/10.1126/science.aaa9272.
J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, ACS Nano, 8, 1674 (2014); https://doi.org/10.1021/nn406020d.
T.P. Kaloni, M. Upadhyay Kahaly, R. Faccio and U. Schwingenschlogl, Carbon, 64, 281 (2013); https://doi.org/10.1016/j.carbon.2013.07.062.
Y.C. Cheng, T.P. Kaloni, Z.Y. Zhu and U. Schwingenschlogl, Appl. Phys. Lett., 101, 73110 (2012); https://doi.org/10.1063/1.4746261.
Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T.P. Russell and Y. Chen, Nat. Photonics, 9, 35 (2014); https://doi.org/10.1038/nphoton.2014.269.
F. Franco Jr. and A.A. Padama, Polymer, 97, 55 (2016); https://doi.org/10.1016/j.polymer.2016.05.025.
E.F. Oliveira and F.C. Lavarda, Mater. Chem. Phys., 148, 923 (2014); https://doi.org/10.1016/j.matchemphys.2014.09.002.
H. Ullah, A.-H.A. Shah, S. Bilal and K. Ayub, J. Phys. Chem. C, 118, 17819 (2014); https://doi.org/10.1021/jp505626d.
H. Sahu and A. Panda, Macromolecules, 46, 844 (2013); https://doi.org/10.1021/ma3024409.
L. Zhang, K. Pei, M. Yu, Y. Huang, H. Zhao, M. Zeng, Y. Wang and J. Gao, J. Phys. Chem. C, 116, 26154 (2012); https://doi.org/10.1021/jp306656c.
M. Qiu, R.G. Brandt, Y. Niu, X. Bao, D. Yu, N. Wang, L. Han, L. Yu, S. Xia and R. Yang, J. Phys. Chem. C, 119, 8501 (2015); https://doi.org/10.1021/acs.jpcc.5b01071.
R.A. Street, S.A. Hawks, P.P. Khlyabich, G. Li, B.J. Schwartz, B.C. Thompson and Y. Yang, J. Phys. Chem. C, 118, 21873 (2014); https://doi.org/10.1021/jp507097h.
A. Dkhissi, Synth. Met., 161, 1441 (2011); https://doi.org/10.1016/j.synthmet.2011.04.003.
M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger and C.J. Brabec, Adv. Mater., 18, 789 (2006); https://doi.org/10.1002/adma.200501717.
G.R. Hutchison, M.A. Ratner and T.J. Marks, J. Am. Chem. Soc., 127, 2339 (2005); https://doi.org/10.1021/ja0461421.
L. Pandey, C. Risko, J.E. Norton and J.L. Bredas, Macromolecules, 45, 6405 (2012); https://doi.org/10.1021/ma301164e.
M. Moral, A. Garzon, G. Garcia, J.M. Granadino-Roldan and M. Fernandez-Gomez, J. Phys. Chem. C, 119, 4588 (2015); https://doi.org/10.1021/jp5120948.
J. Wojtkiewicz, A. Iwan, M. Pilch, B. Boharewicz, K. Wójcik, I. Tazbir and M. Kaminska, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 208 (2017); https://doi.org/10.1016/j.saa.2017.03.046.
X.-H. Xie, W. Shen, R.-X. He and M. Li, Bull. Korean Chem. Soc., 34, 2995 (2013); https://doi.org/10.5012/bkcs.2013.34.10.2995.
F. Franco Jr., Mol. Simul., 43, 222 (2017); https://doi.org/10.1080/08927022.2016.1250267.
J.J.P. Stewart, MOPAC2016, Computational Chemistry, Colorado Springs, CO, USA (2016).
A.A. Granovsky, GAMESS/Firefly version 8.1 (2013); http://classic.chem.msu.su/gran/gamess/index.html.
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112.
J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu and Z.Q. Yang, J. Phys. Chem. A, 110, 12005 (2006); https://doi.org/10.1021/jp063669m.
J.M. Toussaint and J.L. Bredas, Synth. Met., 61, 103 (1993); https://doi.org/10.1016/0379-6779(93)91205-G.
F. Wu, L. Chen, H. Wang and Y. Chen, J. Phys. Chem. C, 117, 9581 (2013); https://doi.org/10.1021/jp401552f.
T.M. Pappenfus, J.A. Schmidt, R.E. Koehn and J.D. Alia, Macromolecules, 44, 2354 (2011); https://doi.org/10.1021/ma1026498.
J. Roncali, Macromol. Rapid Commun., 28, 1761 (2007); https://doi.org/10.1002/marc.200700345.
F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, Springer, New York, edn 5, p. 339 (2007).
F. Franco Jr. and A.A. Padama, J. Phys. Soc. Jpn., 86, 064802 (2017); https://doi.org/10.7566/JPSJ.86.064802.
M. Reyes-Reyes, K. Kim and D.L. Carroll, Appl. Phys. Lett., 87, 83506 (2005); https://doi.org/10.1063/1.2006986.