Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microbial Fuel Cells as Alternate Source of Energy: Research, Advancements and Future Prospects in Indian Scenario
Corresponding Author(s) : Rubina Basheer
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
Today, the world is on the verge of transformation from fossil fuels to alternative and sustainable renewable sources due to many reasons. Many plausible technologies have been developed of which, energy from biomass and biowaste is a widely accepted choice. In India too, the fuel crisis is imminent and renewable fuel sources are being developed on a large scale to meet energy requirements. However, generation of electricity from biomass and biowaste is a rather unconventional method which is less exploited. The technology that possesses immense future prospective requires collaboration of expertise from various disciplines of science. Here we present a comprehensive view of developments and novel approaches in microbial fuel cell research in Indian scenario in the backdrop of the developments on a global scale. Though the research outputs in India in terms of power density is in par with that on global scale, we lag behind in bringing a collaborative approach.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.J. Campbell and J.H. Laherrère, Sci. Am., 78, 78 (1998).
- R. Detchon and R. van Leeuwen, Nature, 508, 309 (2014); https://doi.org/10.1038/508309a.
- World Bank Energy and Mining Sector Board, Energy Policies and Multitopic Household Surveys: Guidelines for Questionnaire Design in Living Standards Measurement Studies, Discussion Paper No. 17, Washington DC, USA (2006).
- http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=6&pid=29&aid=12&cid=regions&syid=2008&eyid=2012&unit=BKWH.
- R. Singh, M. Srivastava and A. Shukla, Renew. Sustain. Energy Rev., 54, 202 (2016); https://doi.org/10.1016/j.rser.2015.10.005.
- A. Demirbas, Energ. Source Part B, 3, 177 (2008); https://doi.org/10.1080/15567240600815117.
- B. Demirel, P. Scherer, O. Yenigun and T.T. Onay, Crit. Rev. Environ. Sci. Technol., 40, 116 (2010); https://doi.org/10.1080/10643380802013415.
- A. Pandey, Biofuels: Alternative Feedstocks and Conversion Processes, Academic Press, Massachusetts, Chap. 1, pp. 1-6 (2011).
- U. Maitra, S.R. Lingampalli and C.N.R. Rao, Curr. Sci., 106, 518 (2014).
- A. Domìnguez-Garay, A. Berná, I. Ortiz-Bernad and A. Esteve-Núñez, Environ. Sci. Technol., 47, 2117 (2013); https://doi.org/10.1021/es303436x.
- Y. Ahn, M.C. Hatzell, F. Zhang and B.E. Logan, J. Power Sources, 249, 440 (2014); https://doi.org/10.1016/j.jpowsour.2013.10.081.
- P. Srivastava, A.K. Yadav and B.K. Mishra, Bioresour. Technol., 195, 223 (2015); https://doi.org/10.1016/j.biortech.2015.05.072.
- J.M. Sonawane, S.B. Adeloju and P.C. Ghosh, Int. J. Hydrogen Energy, 42, 23794 (2017); https://doi.org/10.1016/j.ijhydene.2017.03.137.
- R.D. Cusick, P.D. Kiely and B.E. Logan, Int. J. Hydrogen Energy, 35, 8855 (2010); https://doi.org/10.1016/j.ijhydene.2010.06.077.
- B.E. Logan, Nat. Rev. Microbiol., 7, 375 (2009); https://doi.org/10.1038/nrmicro2113.
- B.E. Logan and M. Elimelech, Nature, 488, 313 (2012); https://doi.org/10.1038/nature11477.
- O. Schaetzle, F. Barrière and K. Baronian, Energy Environ. Sci., 1, 607 (2008); https://doi.org/10.1039/b810642h.
- S.B. Velasquez-Orta, T.P. Curtis and B.E. Logan, Biotechnol. Bioeng., 103, 1068 (2009); https://doi.org/10.1002/bit.22346.
- N. Sekar, Y. Umasankar and R.P. Ramasamy, Phys. Chem. Chem. Phys., 16, 7862 (2014); https://doi.org/10.1039/c4cp00494a.
- J.P. Badalamenti, R. Krajmalnik-Brown and C.I. Torres, MBio, 4, e00144-13 (2013); https://doi.org/10.1128/mBio.00144-13.
- D.R. Lovley, Nat. Rev. Microbiol., 4, 497 (2006); https://doi.org/10.1038/nrmicro1442.
- A.C. Ortega-Martínez, K. Juárez-López, O. Solorza-Feria, M.T. PonceNoyola, J. Galindez-Mayer, N. Rinderknecht-Seijas and H.M. PoggiVaraldo, Int. J. Hydrogen Energy, 38, 12589 (2013); https://doi.org/10.1016/j.ijhydene.2013.02.023.
- N.S. Malvankar, J. Lau, K.P. Nevin, A.E. Franks, M.T. Tuominen and D.R. Lovley, Appl. Environ. Microbiol., 78, 5967 (2012); https://doi.org/10.1128/AEM.01803-12.
- M. Zhou, H. Wang, D.J. Hassett and T. Gu, J. Chem. Technol. Biotechnol., 88, 508 (2013); https://doi.org/10.1002/jctb.4004.
- Z. Ren, T.E. Ward and J.M. Regan, Environ. Sci. Technol., 41, 4781 (2007); https://doi.org/10.1021/es070577h.
- A. Sydow, T. Krieg, F. Mayer, J. Schrader and D. Holtmann, Appl. Microbiol. Biotechnol., 98, 8481 (2014); https://doi.org/10.1007/s00253-014-6005-z.
- H. Liu, S. Cheng and B.E. Logan, Environ. Sci. Technol., 39, 658 (2005); https://doi.org/10.1021/es048927c.
- D. Pant, G. Van Bogaert, L. Diels and K. Vanbroekhoven, Bioresour. Technol., 101, 1533 (2010); https://doi.org/10.1016/j.biortech.2009.10.017.
- X. Xie, M. Ye, L. Hu, N. Liu, J.R. McDonough, W. Chen, H.N. Alshareef, C.S. Criddle and Y. Cui, Energy Environ. Sci., 5, 5265 (2012); https://doi.org/10.1039/C1EE02122B.
- J. Wei, P. Liang and X. Huang, Bioresour. Technol., 102, 9335 (2011); https://doi.org/10.1016/j.biortech.2011.07.019.
- L.M. Tender, S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman, J. Melhado, R.C. Tyce, D. Flynn, R. Petrecca and J. Dobarro, J. Power Sources, 179, 571 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.123.
- X. Jiang, J. Hu, L.A. Fitzgerald, J.C. Biffinger, P. Xie, B.R. Ringeisen and C.M. Lieber, Proc. Natl. Acad. Sci. USA, 107, 16806 (2010); https://doi.org/10.1073/pnas.1011699107.
- X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito and B.E. Logan, Environ. Sci. Technol., 43, 6870 (2009); https://doi.org/10.1021/es900997w.
- K.R. Fradler, I. Michie, R.M. Dinsdale, A.J. Guwy and G.C. Premier, Water Res., 55, 115 (2014); https://doi.org/10.1016/j.watres.2014.02.026.
- X.M. Li, K.Y. Cheng, A. Selvam and J.W.C. Wong, Process Biochem., 48, 283 (2013); https://doi.org/10.1016/j.procbio.2012.10.001.
- Z. Li, Y. Zhang, P.R. LeDuc and K.B. Gregory, Biotechnol. Bioeng., 108, 2061 (2011); https://doi.org/10.1002/bit.23156.
- J.E. Mink, R.M. Qaisi, B.E. Logan and M.M. Hussain, NPG Asia Mater., 6, e89 (2014); https://doi.org/10.1038/am.2014.1.
- K. Inamuddin, K. Ahmad and M. Naushad, Int. J. Hydrogen Energy, 39, 7417 (2014); https://doi.org/10.1016/j.ijhydene.2014.02.171.
- H. Liu and B.E. Logan, Environ. Sci. Technol., 38, 4040 (2004); https://doi.org/10.1021/es0499344.
- S.E. Oh and B.E. Logan, Appl. Microbiol. Biotechnol., 70, 162 (2006); https://doi.org/10.1007/s00253-005-0066-y.
- K.J. Chae, M. Choi, F.F. Ajayi, W. Park, I.S. Chang and I.S. Kim, Energy Fuels, 22, 169 (2008); https://doi.org/10.1021/ef700308u.
- A. Mayahi, H. Ilbeygi,A.F. Ismail, J. Jaafar, W.R.W. Daud, D. Emadzadeh, E. Shamsaei, D. Martin, M. Rahbari-Sisakht, M. Ghasemi and J. Zaidi, J. Chem. Technol. Biotechnol., 90, 641 (2015); https://doi.org/10.1002/jctb.4622.
- D.R. Lovley, R.H. Glaven and A.E. Franks,Chemsuschem, 5, 1092 (2012); https://doi.org/10.1002/cssc.201100714.
- D.R. Lovley, Curr. Opin. Biotechnol., 19, 64 (2011); https://doi.org/10.1016/j.copbio.2008.10.005.
- D.R. Lovley, Environ. Microbiol. Rep., 3, 27 (2011); https://doi.org/10.1111/j.1758-2229.2010.00211.x.
- D.R. Lovley, Annu. Rev. Microbiol., 66, 391 (2012); https://doi.org/10.1146/annurev-micro-092611-150104.
- P.D. Kiely, J.M. Regan and B.E. Logan, Curr. Opin. Biotechnol., 22, 378 (2011); https://doi.org/10.1016/j.copbio.2011.03.003.
- B.E. Logan and K. Rabaey, Science, 337, 686 (2012); https://doi.org/10.1126/science.1217412.
- D.R. Bond, S.M. Strycharz-Glaven, L.M. Tender and C.I. Torres, ChemSusChem, 5, 1099 (2012); https://doi.org/10.1002/cssc.201100748.
- K. Richter, M. Schicklberger and J. Gescher, Appl. Environ. Microbiol., 78, 913 (2012); https://doi.org/10.1128/AEM.06803-11.
- N.S. Malvankar, S.E. Yalcin, M.T. Tuominen and D.R. Lovley, Nat. Nanotechnol., 9, 1012 (2014); https://doi.org/10.1038/nnano.2014.236.
- B. Schütz, J. Seidel, G. Sturm, O. Einsle and J. Gescher, Appl. Environ. Microbiol., 77, 6172 (2011); https://doi.org/10.1128/AEM.00606-11.
- R. Nakamura, F. Kai, A. Okamoto and K. Hashimoto, J. Mater. Chem. A Mater. Energy Sustain., 1, 5148 (2013); https://doi.org/10.1039/c3ta01672b.
- N.S. Malvankar, M. Vargas, K.P. Nevin,A.E. Franks, C. Leang, B.-C. Kim, K. Inoue, T. Mester, S.F. Covalla, J.P. Johnson, V.M. Rotello, M.T. Tuominen and D.R. Lovley, Nat. Nanotechnol., 6, 573 (2011); https://doi.org/10.1038/nnano.2011.119.
- M. Vargas, N.S. Malvankar, P.-L. Tremblay, C. Leang, J.A. Smith, P. Patel, O. Snoeyenbos-West, K.P. Nevin and D.R. Lovley, MBio, 4, e00210-13 (2013); https://doi.org/10.1128/mBio.00210-13.
- N.S. Malvankar, M.T. Tuominen and D.R. Lovley, Energy Environ. Sci., 5, 8651 (2012); https://doi.org/10.1039/c2ee22330a.
- M.Y. El-Naggar, G. Wanger, K.M. Leung, T.D. Yuzvinsky, G. Southam, J. Yang, W.M. Lau, K.H. Nealson and Y.A. Gorby, Proc. Natl. Acad. Sci. USA, 107, 18127 (2010); https://doi.org/10.1073/pnas.1004880107.
- K. Rabaey, N. Boon, M. Höfte and W. Verstraete, Environ. Sci. Technol., 39, 3401 (2005); https://doi.org/10.1021/es048563o.
- S. Freguia, M. Masuda, S. Tsujimura and K. Kano, Bioelectrochemistry, 76, 14 (2009); https://doi.org/10.1016/j.bioelechem.2009.04.001.
- X. Tang, Z. Du and H. Li, Electrochem. Commun., 12, 1140 (2010); https://doi.org/10.1016/j.elecom.2010.06.005.
- E. Marsili, D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick and D.R. Bond, Proc. Natl. Acad. Sci. USA, 105, 3968 (2008); https://doi.org/10.1073/pnas.0710525105.
- A. Okamoto, K. Hashimoto, K.H. Nealson and R. Nakamura, Proc. Natl. Acad. Sci. USA, 110, 7856 (2012); https://doi.org/10.1073/pnas.1220823110.
- B. Xu, B.-Y. Chen, C.-C. Hsueh, L.-J. Qin and C.-T. Chang, Bioresour. Technol., 163, 280 (2014); https://doi.org/10.1016/j.biortech.2014.04.031.
- K. Rabaey and R.A. Rozendal, Nat. Rev. Microbiol., 8, 706 (2010); https://doi.org/10.1038/nrmicro2422.
- M.C.A.A. Van Eerten-Jansen,A. Ter Heijne, T.I.M. Grootscholten, K.J.J. Steinbusch, T.H.J.A. Sleutels, H.V.M. Hamelers and C.J.N. Buisman, ACS Sustain. Chem. Eng., 1, 513 (2013); https://doi.org/10.1021/sc300168z.
- X. Xie, M. Ye, P.-C. Hsu, N. Liu, C.S. Criddle and Y. Cui, Proc. Natl. Acad. Sci. USA, 110, 15925 (2013); https://doi.org/10.1073/pnas.1307327110.
- M.A. Rosenbaum and A.E. Franks, Appl. Microbiol. Biotechnol., 98, 509 (2014); https://doi.org/10.1007/s00253-013-5396-6.
- M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali and M. Beller, Nature, 495, 85 (2013); https://doi.org/10.1038/nature11891.
- A. Carmalin Sophia, V.M. Bhalambaal, M. Thirunavoukkarasu and E.C. Lima, J. Environ. Chem. Eng., 4, 3468 (2016); https://doi.org/10.1016/j.jece.2016.07.024.
- Intergovernmental Panel on Climate Change (IPCC), Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) Full Report, Geneva, Switzerland (2014).
- K. Geetha and S.A. Raj, Asian J. Microbiol. Biotech. Environ. Sci., 15, 779 (2013).
- J. Jayapriya and V. Ramamurthy, Can. J. Chem. Eng., 92, 610 (2014); https://doi.org/10.1002/cjce.21895.
- A. Nandy, V. Kumar and P.P. Kundu, Enzyme Microb. Technol., 53, 339 (2013); https://doi.org/10.1016/j.enzmictec.2013.07.006.
- R.N. Krishnaraj, S. Berchmans, S. Chandran and P. Pal, Electrochim. Acta, 112, 465 (2013); https://doi.org/10.1016/j.electacta.2013.08.180.
- M. Sharma, P. Jain, J.L. Varanasi, B. Lal, J. Rodríguez, J.M. Lema and P.M. Sarma, Bioresour. Technol., 150, 172 (2013); https://doi.org/10.1016/j.biortech.2013.09.069.
- J. Deepika, S. Meignanalakshmi and W.R. Thilagaraj, Am. J. Environ. Sci., 9, 424 (2013); https://doi.org/10.3844/ajessp.2013.424.430.
- A. Selvaraj, V. Sumantran, N. Chowdhary and G. Kumar, Curr. Bioinform., 9, 166 (2014); https://doi.org/10.2174/1574893608999140109113236.
- R. Gupta, W. Bekele and A. Ghatak, Bioresour. Technol., 147, 654 (2013); https://doi.org/10.1016/j.biortech.2013.08.091.
- S. Khilari, S. Pandit, D. Das and D. Pradhan, Biosens. Bioelectron., 54, 534 (2014); https://doi.org/10.1016/j.bios.2013.11.044.
- P. Khare, J. Ramkumar and N. Verma, Electrochim. Acta, 219, 88 (2016); https://doi.org/10.1016/j.electacta.2016.09.140.
- D.A. Jadhav, A.N. Ghadge and M.M. Ghangrekar, Bioresour. Technol., 191, 110 (2015); https://doi.org/10.1016/j.biortech.2015.04.109.
- B.R. Tiwari, M.T. Noori and M.M. Ghangrekar, Int. J. Hydrogen Energy, 42, 23085 (2017); https://doi.org/10.1016/j.ijhydene.2017.07.201.
- S. Ayyaru and S. Dharmalingam, Energy, 88, 202 (2015); https://doi.org/10.1016/j.energy.2015.05.015.
- P.R. Jothi and S. Dharmalingam, J. Membr. Sci., 450, 389 (2014); https://doi.org/10.1016/j.memsci.2013.09.034.
- N.V. Prabhu and D. Sangeetha, Chem. Eng. J., 243, 564 (2014); https://doi.org/10.1016/j.cej.2013.12.103.
- P. Pardeshi and A. Mungray, Int. J. Polym. Mater. Polym. Biomater., 63, 595 (2014); https://doi.org/10.1080/00914037.2013.854232.
- K. Sabina, M.A. Fayidh, G. Archana, M. Sivarajan, S. Babuskin, P.A.S. Babu, K. Radha krishnan and M. Sukumar, Environ. Technol., 35, 2194 (2014); https://doi.org/10.1080/09593330.2014.896951.
- S.A. Masih, M. Devasahayam and C. Dwivedi, J. Sci. Ind. Res. (India), 73, 243 (2014).
- S.M. Javaid Zaidi, S.U. Rahman and N. Abo-Ghander, Integrated Electrolytic Electrodialytic Apparatus and Process for Recovering Metals and Metal Ions Containing Waste Streams, US Patent 7790016 (2010).
- M. Muthukumar and T. Sangeetha, Int. J. Green Energy, 11, 161 (2014); https://doi.org/10.1080/15435075.2013.771581.
- P. Chatterjee and M.M. Ghangrekar, Water Sci. Technol., 69, 634 (2014); https://doi.org/10.2166/wst.2013.760.
- D.A. Jadhav, A.N. Ghadge and M.M. Ghangrekar, Bioresour. Technol., 163, 328 (2014a); https://doi.org/10.1016/j.biortech.2014.04.055.
- G. Velvizhi and S.V. Mohan, Environ. Prog. Sustain. Energy, 33, 454 (2014); https://doi.org/10.1002/ep.11809.
- A. Yadav, D. Parida, A. Muralidharan and M. Ramya, Curr. Sci., 106, 29 (2014).
- Anupama, N.V. Pradeep, U.S. Hampannavar, M.K. Sneha and V.S. Kumbar, Int. J. Earth Sci. Eng., 6, 1073 (2013).
- S.G. Ray and M.M. Ghangrekar, Bioresour. Technol., 176, 8 (2015); https://doi.org/10.1016/j.biortech.2014.10.158.
- P. Gangadharan, I.M. Nambi and J. Senthilnathan, Bioresour. Technol., 195, 96 (2015); https://doi.org/10.1016/j.biortech.2015.06.078.
- G.G. Kumar, C.J. Kirubaharan, D.J. Yoo and A.R. Kim, Int. J. Hydrogen Energy, 41, 13208 (2016); https://doi.org/10.1016/j.ijhydene.2016.05.099.
- S. Srikanth, M. Kumar, D. Singh, M.P. Singh and B.P. Das, Bioresour. Technol., 221, 70 (2016); https://doi.org/10.1016/j.biortech.2016.09.034.
- M.Z. Khan, A.S. Nizami, M. Rehan, O.K.M. Ouda, S. Sultana, I.M. Ismail and K. Shahzad, Appl. Energy, 185, 410 (2017); https://doi.org/10.1016/j.apenergy.2016.11.005.
- J.C. Biffinger, L.A. Fitzgerald, R. Ray, B.J. Little, S.E. Lizewski, E.R. Petersen, B.R. Ringeisen, W.C. Sanders, P.E. Sheehan, J.J. Pietron, J.W. Baldwin, L.J. Nadeau, G.R. Johnson, M. Ribbens, S.E. Finkel and K.H. Nealson, Bioresour. Technol., 102, 290 (2011); https://doi.org/10.1016/j.biortech.2010.06.078.
- M. Zhou, H. He, H. Wang, M. Zhou and T. Gu, J. Microb. Biochem. Technol., S12, 004 (2013); https://doi.org/10.4172/1948-5948.S12-004.
- L.A. Fitzgerald, E.R. Petersen, D.H. Leary, L.J. Nadeau, C.M. Soto, R.I. Ray, B.J. Little, B.R. Ringeisen, G.R. Johnson, G.J. Vora and J.C. Biffinger, Biosens. Bioelectron., 40, 102 (2013); https://doi.org/10.1016/j.bios.2012.06.039.
- A.N. Ghadge and M.M. Ghangrekar, Electrochim. Acta, 166, 320 (2015); https://doi.org/10.1016/j.electacta.2015.03.105.
- D. Pant, D. Arslan, G. Van Bogaert, Y.A. Gallego, H. De Wever, L. Diels and K. Vanbroekhoven, Environ. Technol., 34, 1935 (2013); https://doi.org/10.1080/09593330.2013.828763.
- D.A. Jadhav, A.N. Ghadge, D. Mondal and M.M. Ghangrekar, Bioresour. Technol., 154, 330 (2014); https://doi.org/10.1016/j.biortech.2013.12.069.
- T.K. Sajana, M.M. Ghangrekar and A. Mitra, Bioresour. Technol., 155, 84 (2014); https://doi.org/10.1016/j.biortech.2013.12.094.
- U. Karra, S.S. Manickam, J.R. McCutcheon, N. Patel and B. Li, Int. J. Hydrogen Energy, 38, 1588 (2013); https://doi.org/10.1016/j.ijhydene.2012.11.005.
- G.G. Kumar, Z. Awan, K. Suk Nahm and J. Stanley Xavier, Biosens. Bioelectron., 53, 528 (2014); https://doi.org/10.1016/j.bios.2013.10.012.
- I. Singh and A. Chandra, Int. J. Hydrogen Energy, 41, 1913 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.130.
- S. Singha, T. Jana, J.A. Modestra,A.N. Kumar and S.V. Mohan, J. Power Sources, 317, 143 (2016); https://doi.org/10.1016/j.jpowsour.2016.03.103.
- D.A. Jadhav, S.C. Jain and M.M. Ghangrekar, Energy, 113, 76 (2016); https://doi.org/10.1016/j.energy.2016.07.025.
- M. Elangovan and S. Dharmalingam, Mater. Chem. Phys., 199, 528 (2017); https://doi.org/10.1016/j.matchemphys.2017.07.038.
- S.S. Kumar, S. Basu and N.R. Bishnoi, Biochem. Eng. J., 121, 17 (2017); https://doi.org/10.1016/j.bej.2017.01.014.
References
C.J. Campbell and J.H. Laherrère, Sci. Am., 78, 78 (1998).
R. Detchon and R. van Leeuwen, Nature, 508, 309 (2014); https://doi.org/10.1038/508309a.
World Bank Energy and Mining Sector Board, Energy Policies and Multitopic Household Surveys: Guidelines for Questionnaire Design in Living Standards Measurement Studies, Discussion Paper No. 17, Washington DC, USA (2006).
R. Singh, M. Srivastava and A. Shukla, Renew. Sustain. Energy Rev., 54, 202 (2016); https://doi.org/10.1016/j.rser.2015.10.005.
A. Demirbas, Energ. Source Part B, 3, 177 (2008); https://doi.org/10.1080/15567240600815117.
B. Demirel, P. Scherer, O. Yenigun and T.T. Onay, Crit. Rev. Environ. Sci. Technol., 40, 116 (2010); https://doi.org/10.1080/10643380802013415.
A. Pandey, Biofuels: Alternative Feedstocks and Conversion Processes, Academic Press, Massachusetts, Chap. 1, pp. 1-6 (2011).
U. Maitra, S.R. Lingampalli and C.N.R. Rao, Curr. Sci., 106, 518 (2014).
A. Domìnguez-Garay, A. Berná, I. Ortiz-Bernad and A. Esteve-Núñez, Environ. Sci. Technol., 47, 2117 (2013); https://doi.org/10.1021/es303436x.
Y. Ahn, M.C. Hatzell, F. Zhang and B.E. Logan, J. Power Sources, 249, 440 (2014); https://doi.org/10.1016/j.jpowsour.2013.10.081.
P. Srivastava, A.K. Yadav and B.K. Mishra, Bioresour. Technol., 195, 223 (2015); https://doi.org/10.1016/j.biortech.2015.05.072.
J.M. Sonawane, S.B. Adeloju and P.C. Ghosh, Int. J. Hydrogen Energy, 42, 23794 (2017); https://doi.org/10.1016/j.ijhydene.2017.03.137.
R.D. Cusick, P.D. Kiely and B.E. Logan, Int. J. Hydrogen Energy, 35, 8855 (2010); https://doi.org/10.1016/j.ijhydene.2010.06.077.
B.E. Logan, Nat. Rev. Microbiol., 7, 375 (2009); https://doi.org/10.1038/nrmicro2113.
B.E. Logan and M. Elimelech, Nature, 488, 313 (2012); https://doi.org/10.1038/nature11477.
O. Schaetzle, F. Barrière and K. Baronian, Energy Environ. Sci., 1, 607 (2008); https://doi.org/10.1039/b810642h.
S.B. Velasquez-Orta, T.P. Curtis and B.E. Logan, Biotechnol. Bioeng., 103, 1068 (2009); https://doi.org/10.1002/bit.22346.
N. Sekar, Y. Umasankar and R.P. Ramasamy, Phys. Chem. Chem. Phys., 16, 7862 (2014); https://doi.org/10.1039/c4cp00494a.
J.P. Badalamenti, R. Krajmalnik-Brown and C.I. Torres, MBio, 4, e00144-13 (2013); https://doi.org/10.1128/mBio.00144-13.
D.R. Lovley, Nat. Rev. Microbiol., 4, 497 (2006); https://doi.org/10.1038/nrmicro1442.
A.C. Ortega-Martínez, K. Juárez-López, O. Solorza-Feria, M.T. PonceNoyola, J. Galindez-Mayer, N. Rinderknecht-Seijas and H.M. PoggiVaraldo, Int. J. Hydrogen Energy, 38, 12589 (2013); https://doi.org/10.1016/j.ijhydene.2013.02.023.
N.S. Malvankar, J. Lau, K.P. Nevin, A.E. Franks, M.T. Tuominen and D.R. Lovley, Appl. Environ. Microbiol., 78, 5967 (2012); https://doi.org/10.1128/AEM.01803-12.
M. Zhou, H. Wang, D.J. Hassett and T. Gu, J. Chem. Technol. Biotechnol., 88, 508 (2013); https://doi.org/10.1002/jctb.4004.
Z. Ren, T.E. Ward and J.M. Regan, Environ. Sci. Technol., 41, 4781 (2007); https://doi.org/10.1021/es070577h.
A. Sydow, T. Krieg, F. Mayer, J. Schrader and D. Holtmann, Appl. Microbiol. Biotechnol., 98, 8481 (2014); https://doi.org/10.1007/s00253-014-6005-z.
H. Liu, S. Cheng and B.E. Logan, Environ. Sci. Technol., 39, 658 (2005); https://doi.org/10.1021/es048927c.
D. Pant, G. Van Bogaert, L. Diels and K. Vanbroekhoven, Bioresour. Technol., 101, 1533 (2010); https://doi.org/10.1016/j.biortech.2009.10.017.
X. Xie, M. Ye, L. Hu, N. Liu, J.R. McDonough, W. Chen, H.N. Alshareef, C.S. Criddle and Y. Cui, Energy Environ. Sci., 5, 5265 (2012); https://doi.org/10.1039/C1EE02122B.
J. Wei, P. Liang and X. Huang, Bioresour. Technol., 102, 9335 (2011); https://doi.org/10.1016/j.biortech.2011.07.019.
L.M. Tender, S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman, J. Melhado, R.C. Tyce, D. Flynn, R. Petrecca and J. Dobarro, J. Power Sources, 179, 571 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.123.
X. Jiang, J. Hu, L.A. Fitzgerald, J.C. Biffinger, P. Xie, B.R. Ringeisen and C.M. Lieber, Proc. Natl. Acad. Sci. USA, 107, 16806 (2010); https://doi.org/10.1073/pnas.1011699107.
X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito and B.E. Logan, Environ. Sci. Technol., 43, 6870 (2009); https://doi.org/10.1021/es900997w.
K.R. Fradler, I. Michie, R.M. Dinsdale, A.J. Guwy and G.C. Premier, Water Res., 55, 115 (2014); https://doi.org/10.1016/j.watres.2014.02.026.
X.M. Li, K.Y. Cheng, A. Selvam and J.W.C. Wong, Process Biochem., 48, 283 (2013); https://doi.org/10.1016/j.procbio.2012.10.001.
Z. Li, Y. Zhang, P.R. LeDuc and K.B. Gregory, Biotechnol. Bioeng., 108, 2061 (2011); https://doi.org/10.1002/bit.23156.
J.E. Mink, R.M. Qaisi, B.E. Logan and M.M. Hussain, NPG Asia Mater., 6, e89 (2014); https://doi.org/10.1038/am.2014.1.
K. Inamuddin, K. Ahmad and M. Naushad, Int. J. Hydrogen Energy, 39, 7417 (2014); https://doi.org/10.1016/j.ijhydene.2014.02.171.
H. Liu and B.E. Logan, Environ. Sci. Technol., 38, 4040 (2004); https://doi.org/10.1021/es0499344.
S.E. Oh and B.E. Logan, Appl. Microbiol. Biotechnol., 70, 162 (2006); https://doi.org/10.1007/s00253-005-0066-y.
K.J. Chae, M. Choi, F.F. Ajayi, W. Park, I.S. Chang and I.S. Kim, Energy Fuels, 22, 169 (2008); https://doi.org/10.1021/ef700308u.
A. Mayahi, H. Ilbeygi,A.F. Ismail, J. Jaafar, W.R.W. Daud, D. Emadzadeh, E. Shamsaei, D. Martin, M. Rahbari-Sisakht, M. Ghasemi and J. Zaidi, J. Chem. Technol. Biotechnol., 90, 641 (2015); https://doi.org/10.1002/jctb.4622.
D.R. Lovley, R.H. Glaven and A.E. Franks,Chemsuschem, 5, 1092 (2012); https://doi.org/10.1002/cssc.201100714.
D.R. Lovley, Curr. Opin. Biotechnol., 19, 64 (2011); https://doi.org/10.1016/j.copbio.2008.10.005.
D.R. Lovley, Environ. Microbiol. Rep., 3, 27 (2011); https://doi.org/10.1111/j.1758-2229.2010.00211.x.
D.R. Lovley, Annu. Rev. Microbiol., 66, 391 (2012); https://doi.org/10.1146/annurev-micro-092611-150104.
P.D. Kiely, J.M. Regan and B.E. Logan, Curr. Opin. Biotechnol., 22, 378 (2011); https://doi.org/10.1016/j.copbio.2011.03.003.
B.E. Logan and K. Rabaey, Science, 337, 686 (2012); https://doi.org/10.1126/science.1217412.
D.R. Bond, S.M. Strycharz-Glaven, L.M. Tender and C.I. Torres, ChemSusChem, 5, 1099 (2012); https://doi.org/10.1002/cssc.201100748.
K. Richter, M. Schicklberger and J. Gescher, Appl. Environ. Microbiol., 78, 913 (2012); https://doi.org/10.1128/AEM.06803-11.
N.S. Malvankar, S.E. Yalcin, M.T. Tuominen and D.R. Lovley, Nat. Nanotechnol., 9, 1012 (2014); https://doi.org/10.1038/nnano.2014.236.
B. Schütz, J. Seidel, G. Sturm, O. Einsle and J. Gescher, Appl. Environ. Microbiol., 77, 6172 (2011); https://doi.org/10.1128/AEM.00606-11.
R. Nakamura, F. Kai, A. Okamoto and K. Hashimoto, J. Mater. Chem. A Mater. Energy Sustain., 1, 5148 (2013); https://doi.org/10.1039/c3ta01672b.
N.S. Malvankar, M. Vargas, K.P. Nevin,A.E. Franks, C. Leang, B.-C. Kim, K. Inoue, T. Mester, S.F. Covalla, J.P. Johnson, V.M. Rotello, M.T. Tuominen and D.R. Lovley, Nat. Nanotechnol., 6, 573 (2011); https://doi.org/10.1038/nnano.2011.119.
M. Vargas, N.S. Malvankar, P.-L. Tremblay, C. Leang, J.A. Smith, P. Patel, O. Snoeyenbos-West, K.P. Nevin and D.R. Lovley, MBio, 4, e00210-13 (2013); https://doi.org/10.1128/mBio.00210-13.
N.S. Malvankar, M.T. Tuominen and D.R. Lovley, Energy Environ. Sci., 5, 8651 (2012); https://doi.org/10.1039/c2ee22330a.
M.Y. El-Naggar, G. Wanger, K.M. Leung, T.D. Yuzvinsky, G. Southam, J. Yang, W.M. Lau, K.H. Nealson and Y.A. Gorby, Proc. Natl. Acad. Sci. USA, 107, 18127 (2010); https://doi.org/10.1073/pnas.1004880107.
K. Rabaey, N. Boon, M. Höfte and W. Verstraete, Environ. Sci. Technol., 39, 3401 (2005); https://doi.org/10.1021/es048563o.
S. Freguia, M. Masuda, S. Tsujimura and K. Kano, Bioelectrochemistry, 76, 14 (2009); https://doi.org/10.1016/j.bioelechem.2009.04.001.
X. Tang, Z. Du and H. Li, Electrochem. Commun., 12, 1140 (2010); https://doi.org/10.1016/j.elecom.2010.06.005.
E. Marsili, D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick and D.R. Bond, Proc. Natl. Acad. Sci. USA, 105, 3968 (2008); https://doi.org/10.1073/pnas.0710525105.
A. Okamoto, K. Hashimoto, K.H. Nealson and R. Nakamura, Proc. Natl. Acad. Sci. USA, 110, 7856 (2012); https://doi.org/10.1073/pnas.1220823110.
B. Xu, B.-Y. Chen, C.-C. Hsueh, L.-J. Qin and C.-T. Chang, Bioresour. Technol., 163, 280 (2014); https://doi.org/10.1016/j.biortech.2014.04.031.
K. Rabaey and R.A. Rozendal, Nat. Rev. Microbiol., 8, 706 (2010); https://doi.org/10.1038/nrmicro2422.
M.C.A.A. Van Eerten-Jansen,A. Ter Heijne, T.I.M. Grootscholten, K.J.J. Steinbusch, T.H.J.A. Sleutels, H.V.M. Hamelers and C.J.N. Buisman, ACS Sustain. Chem. Eng., 1, 513 (2013); https://doi.org/10.1021/sc300168z.
X. Xie, M. Ye, P.-C. Hsu, N. Liu, C.S. Criddle and Y. Cui, Proc. Natl. Acad. Sci. USA, 110, 15925 (2013); https://doi.org/10.1073/pnas.1307327110.
M.A. Rosenbaum and A.E. Franks, Appl. Microbiol. Biotechnol., 98, 509 (2014); https://doi.org/10.1007/s00253-013-5396-6.
M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali and M. Beller, Nature, 495, 85 (2013); https://doi.org/10.1038/nature11891.
A. Carmalin Sophia, V.M. Bhalambaal, M. Thirunavoukkarasu and E.C. Lima, J. Environ. Chem. Eng., 4, 3468 (2016); https://doi.org/10.1016/j.jece.2016.07.024.
Intergovernmental Panel on Climate Change (IPCC), Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) Full Report, Geneva, Switzerland (2014).
K. Geetha and S.A. Raj, Asian J. Microbiol. Biotech. Environ. Sci., 15, 779 (2013).
J. Jayapriya and V. Ramamurthy, Can. J. Chem. Eng., 92, 610 (2014); https://doi.org/10.1002/cjce.21895.
A. Nandy, V. Kumar and P.P. Kundu, Enzyme Microb. Technol., 53, 339 (2013); https://doi.org/10.1016/j.enzmictec.2013.07.006.
R.N. Krishnaraj, S. Berchmans, S. Chandran and P. Pal, Electrochim. Acta, 112, 465 (2013); https://doi.org/10.1016/j.electacta.2013.08.180.
M. Sharma, P. Jain, J.L. Varanasi, B. Lal, J. Rodríguez, J.M. Lema and P.M. Sarma, Bioresour. Technol., 150, 172 (2013); https://doi.org/10.1016/j.biortech.2013.09.069.
J. Deepika, S. Meignanalakshmi and W.R. Thilagaraj, Am. J. Environ. Sci., 9, 424 (2013); https://doi.org/10.3844/ajessp.2013.424.430.
A. Selvaraj, V. Sumantran, N. Chowdhary and G. Kumar, Curr. Bioinform., 9, 166 (2014); https://doi.org/10.2174/1574893608999140109113236.
R. Gupta, W. Bekele and A. Ghatak, Bioresour. Technol., 147, 654 (2013); https://doi.org/10.1016/j.biortech.2013.08.091.
S. Khilari, S. Pandit, D. Das and D. Pradhan, Biosens. Bioelectron., 54, 534 (2014); https://doi.org/10.1016/j.bios.2013.11.044.
P. Khare, J. Ramkumar and N. Verma, Electrochim. Acta, 219, 88 (2016); https://doi.org/10.1016/j.electacta.2016.09.140.
D.A. Jadhav, A.N. Ghadge and M.M. Ghangrekar, Bioresour. Technol., 191, 110 (2015); https://doi.org/10.1016/j.biortech.2015.04.109.
B.R. Tiwari, M.T. Noori and M.M. Ghangrekar, Int. J. Hydrogen Energy, 42, 23085 (2017); https://doi.org/10.1016/j.ijhydene.2017.07.201.
S. Ayyaru and S. Dharmalingam, Energy, 88, 202 (2015); https://doi.org/10.1016/j.energy.2015.05.015.
P.R. Jothi and S. Dharmalingam, J. Membr. Sci., 450, 389 (2014); https://doi.org/10.1016/j.memsci.2013.09.034.
N.V. Prabhu and D. Sangeetha, Chem. Eng. J., 243, 564 (2014); https://doi.org/10.1016/j.cej.2013.12.103.
P. Pardeshi and A. Mungray, Int. J. Polym. Mater. Polym. Biomater., 63, 595 (2014); https://doi.org/10.1080/00914037.2013.854232.
K. Sabina, M.A. Fayidh, G. Archana, M. Sivarajan, S. Babuskin, P.A.S. Babu, K. Radha krishnan and M. Sukumar, Environ. Technol., 35, 2194 (2014); https://doi.org/10.1080/09593330.2014.896951.
S.A. Masih, M. Devasahayam and C. Dwivedi, J. Sci. Ind. Res. (India), 73, 243 (2014).
S.M. Javaid Zaidi, S.U. Rahman and N. Abo-Ghander, Integrated Electrolytic Electrodialytic Apparatus and Process for Recovering Metals and Metal Ions Containing Waste Streams, US Patent 7790016 (2010).
M. Muthukumar and T. Sangeetha, Int. J. Green Energy, 11, 161 (2014); https://doi.org/10.1080/15435075.2013.771581.
P. Chatterjee and M.M. Ghangrekar, Water Sci. Technol., 69, 634 (2014); https://doi.org/10.2166/wst.2013.760.
D.A. Jadhav, A.N. Ghadge and M.M. Ghangrekar, Bioresour. Technol., 163, 328 (2014a); https://doi.org/10.1016/j.biortech.2014.04.055.
G. Velvizhi and S.V. Mohan, Environ. Prog. Sustain. Energy, 33, 454 (2014); https://doi.org/10.1002/ep.11809.
A. Yadav, D. Parida, A. Muralidharan and M. Ramya, Curr. Sci., 106, 29 (2014).
Anupama, N.V. Pradeep, U.S. Hampannavar, M.K. Sneha and V.S. Kumbar, Int. J. Earth Sci. Eng., 6, 1073 (2013).
S.G. Ray and M.M. Ghangrekar, Bioresour. Technol., 176, 8 (2015); https://doi.org/10.1016/j.biortech.2014.10.158.
P. Gangadharan, I.M. Nambi and J. Senthilnathan, Bioresour. Technol., 195, 96 (2015); https://doi.org/10.1016/j.biortech.2015.06.078.
G.G. Kumar, C.J. Kirubaharan, D.J. Yoo and A.R. Kim, Int. J. Hydrogen Energy, 41, 13208 (2016); https://doi.org/10.1016/j.ijhydene.2016.05.099.
S. Srikanth, M. Kumar, D. Singh, M.P. Singh and B.P. Das, Bioresour. Technol., 221, 70 (2016); https://doi.org/10.1016/j.biortech.2016.09.034.
M.Z. Khan, A.S. Nizami, M. Rehan, O.K.M. Ouda, S. Sultana, I.M. Ismail and K. Shahzad, Appl. Energy, 185, 410 (2017); https://doi.org/10.1016/j.apenergy.2016.11.005.
J.C. Biffinger, L.A. Fitzgerald, R. Ray, B.J. Little, S.E. Lizewski, E.R. Petersen, B.R. Ringeisen, W.C. Sanders, P.E. Sheehan, J.J. Pietron, J.W. Baldwin, L.J. Nadeau, G.R. Johnson, M. Ribbens, S.E. Finkel and K.H. Nealson, Bioresour. Technol., 102, 290 (2011); https://doi.org/10.1016/j.biortech.2010.06.078.
M. Zhou, H. He, H. Wang, M. Zhou and T. Gu, J. Microb. Biochem. Technol., S12, 004 (2013); https://doi.org/10.4172/1948-5948.S12-004.
L.A. Fitzgerald, E.R. Petersen, D.H. Leary, L.J. Nadeau, C.M. Soto, R.I. Ray, B.J. Little, B.R. Ringeisen, G.R. Johnson, G.J. Vora and J.C. Biffinger, Biosens. Bioelectron., 40, 102 (2013); https://doi.org/10.1016/j.bios.2012.06.039.
A.N. Ghadge and M.M. Ghangrekar, Electrochim. Acta, 166, 320 (2015); https://doi.org/10.1016/j.electacta.2015.03.105.
D. Pant, D. Arslan, G. Van Bogaert, Y.A. Gallego, H. De Wever, L. Diels and K. Vanbroekhoven, Environ. Technol., 34, 1935 (2013); https://doi.org/10.1080/09593330.2013.828763.
D.A. Jadhav, A.N. Ghadge, D. Mondal and M.M. Ghangrekar, Bioresour. Technol., 154, 330 (2014); https://doi.org/10.1016/j.biortech.2013.12.069.
T.K. Sajana, M.M. Ghangrekar and A. Mitra, Bioresour. Technol., 155, 84 (2014); https://doi.org/10.1016/j.biortech.2013.12.094.
U. Karra, S.S. Manickam, J.R. McCutcheon, N. Patel and B. Li, Int. J. Hydrogen Energy, 38, 1588 (2013); https://doi.org/10.1016/j.ijhydene.2012.11.005.
G.G. Kumar, Z. Awan, K. Suk Nahm and J. Stanley Xavier, Biosens. Bioelectron., 53, 528 (2014); https://doi.org/10.1016/j.bios.2013.10.012.
I. Singh and A. Chandra, Int. J. Hydrogen Energy, 41, 1913 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.130.
S. Singha, T. Jana, J.A. Modestra,A.N. Kumar and S.V. Mohan, J. Power Sources, 317, 143 (2016); https://doi.org/10.1016/j.jpowsour.2016.03.103.
D.A. Jadhav, S.C. Jain and M.M. Ghangrekar, Energy, 113, 76 (2016); https://doi.org/10.1016/j.energy.2016.07.025.
M. Elangovan and S. Dharmalingam, Mater. Chem. Phys., 199, 528 (2017); https://doi.org/10.1016/j.matchemphys.2017.07.038.
S.S. Kumar, S. Basu and N.R. Bishnoi, Biochem. Eng. J., 121, 17 (2017); https://doi.org/10.1016/j.bej.2017.01.014.