Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Physico-chemical Characterization of Solid Solution (1-x)CCTO−xPbTiO3
Corresponding Author(s) : T. Lamcharfi
Asian Journal of Chemistry,
Vol. 33 No. 6 (2021): Vol 33 Issue 6, 2021
Abstract
The composite materials of (1-x)CaCu3Ti4O12, xPbTiO3((1-x)CCTO−xPT) were prepared by a modified solid-state method in several steps. The Rietveld refinement indicates the formation of the pure cubic and tetragonal phases for calcium copper titanate (CCTO) and lead-titanate (PT) pure ceramics, respectively. While for CCTO-PT composites, the coexistence of the two cubic and tetragonal phases was detected with the space group Im-3 and P4mm, respectively. The Raman spectra confirmed these phase formations. The SEM images indicated a change in grains shape from quadratic to semi-spherical with increases of PT contents and a reduce in average grains size with increase of PT content. The dielectric measurements as function of temperature showed two anomalies which exhibit a relaxation-like phenomenon and a clear diffuseness behaviour for all the samples. In addition, the conductivity of these materials decreases and the resistance of grain boundaries was found to increase with the increase of PT addition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, R.W. Smith and W.-N. Mei, Chem. Mater., 19, 6020 (2007); https://doi.org/10.1021/cm0716553
- T. Badapanda, R. Harichandan, S. Nayak, A. Mishra and S. Anwar, Process. Appl. Ceram., 8, 145 (2014); https://doi.org/10.2298/PAC1403145B
- W. Li and R.W. Schwartz, Appl. Phys. Lett., 90, 112901 (2007); https://doi.org/10.1063/1.2713167
- V.S. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, D.J. Satheesh and J. Isac, J. Cryst. Struct. Theory Appl., 3, 57 (2014); https://doi.org/10.4236/csta.2014.33007
- N. Hadi. T. Lamcharfi. F. Abdi and A. Elbasset, Int. J. Dev. Res., 4, 12432 (2017).
- P.R. Bueno, W.C. Ribeiro, M.A. Ramírez, J.A. Varela and E. Longo, J. Appl. Phys. Lett., 90, 142912 (2007); https://doi.org/10.1063/1.2720301
- M. Subramanian, D. Li, N. Duan, B.A. Reisner and A.W. Sleight, Solid State J. Chem., 151, 323 (2000); https://doi.org/10.1006/jssc.2000.8703
- C.C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, M. A. Subramanian, and A.P. Ramirez, Phys. Rev. B, 67, 092106 (2002); https://doi.org/10.1103/PhysRevB.67.092106
- X. H. Zheng, J. Xiao, X. Huang, D.P. Tang and X.L. Liu, J. Mater. Sci: Mater. Electron., 22, 1116 (2011); https://doi.org/10.1007/s10854-010-0269-6
- T. Yamamoto, H. Igarashi and K. Okazaki, J. Am. Ceram. Soc., 66, 363 (1982); https://doi.org/10.1111/j.1151-2916.1983.tb10050.x
- A. Moulson and J.M. Herbert, Electroceramics. Materials, Properties, Applications. Chapman & Hall: London, pp 464 (1990).
- A. Mansingh, Mater. Thin Films, 102, 69 (2001); https://doi.org/10.1080/00150199008221466
- A.M. Glass, Science, 235, 1003 (1987); https://doi.org/10.1126/science.235.4792.1003
- G. Burns and B.A. Scott, Phys. Rev. B, 7, 3088 (1973); https://doi.org/10.1103/PhysRevB.7.3088
- K. Limame, S. Sayouri, M.M. Yahyaoui, A. Housni and B. Jaber, Phys. B. Conden. Matt., 494, 26 (2016); https://doi.org/10.1016/j.physb.2016.04.026
- J.S. Wright and L.F. Francis, J. Mater. Res., 8, 1712 (1993); https://doi.org/10.1557/JMR.1993.1712
- G.R. Fox, J.H. Adair and R.E. Newnham, J. Mater. Sci., 25, 3634 (1990); https://doi.org/10.1007/BF00575398
- Y. Ohara, K. Koumoto, T. Shimizu and H. Yanagida, J. Mater. Sci., 30, 263 (1995); https://doi.org/10.1007/BF00352160
- J. Xue, D. Wan and J. Wang, J. Mater. Letts., 39, 364 (1999); https://doi.org/10.1016/S0167-577X(99)00036-1
- B. Barbier, Ph.D. Thesis, Elaboration et caractérisation de condensateurs à base de CaCu3Ti4O12 à forte permittivité relative pour l’électronique de puissance, T. Université Toulouse III-Paul Sabatier (2009).
- K. Limame, Ph.D. Thesis, Elaboration par voie sol-gel e, caractérisation et modélisation des propriétés physiques des matériaux PbTiO3 dopés au La», T. Université Sidi Mohammed Ben Abdellah (2007).
- N. Kolev, R.P. Bontchev, M.A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchuk and M.N. Iliev, J. Phys. Rev. B, 66, 132102 (2002); https://doi.org/10.1103/PhysRevB.66.132102
- C. Mingxiang, Ph.D. Thesis, Extrinsic Dielectric Relaxation of Colossal Dielectric Constant Material CaCu3Ti4O12, Department of Applied Physics, Polytechnic University, Hong Kong (2011).
- K. Chen, Y. Wu, J. Liao, J. Liao and J. Zhu, J. Integr. Ferroelectr., 47, 143 (2008); https://doi.org/10.1080/10584580802089023
- J. Liu, R.W. Smith and W.-N. Mei, J. Am. Chem. Soc., 19, 6020 (2007); https://doi.org/10.1021/cm0716553
- M. D. Fontana, H. Idrissi, G. E. Kugel and K. J. Wojcik, J. Phys. Condens. Matter., 3, 8695 (1991); https://doi.org/10.1088/0953-8984/3/44/014
- F. Li, S.J. Zhang, T.N. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T.R. Shrout and L.-Q. Chen, J. Nat Commun, 7, 13807 (2016); https://doi.org/10.1038/ncomms13807
- Y. Dong, Z. Zhou, R. Liang and X. Dong, J. Am. Ceram. Soc., 103, 4785 (2020); https://doi.org/10.1111/jace.17174
- V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti, P. Piaggio, I. Gregora, T. Ostapchuk, J. Pokorny and J. Petzelt, J. Eur. Ceram. Soc., 26, 2889 (2006); https://doi.org/10.1016/j.jeurceramsoc.2006.02.005
- Z. Yao, H. Liu, H. Hao and M. Cao, J. Appl. Phys., 109, 014105 (2011); https://doi.org/10.1063/1.3525995
References
J. Liu, R.W. Smith and W.-N. Mei, Chem. Mater., 19, 6020 (2007); https://doi.org/10.1021/cm0716553
T. Badapanda, R. Harichandan, S. Nayak, A. Mishra and S. Anwar, Process. Appl. Ceram., 8, 145 (2014); https://doi.org/10.2298/PAC1403145B
W. Li and R.W. Schwartz, Appl. Phys. Lett., 90, 112901 (2007); https://doi.org/10.1063/1.2713167
V.S. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, D.J. Satheesh and J. Isac, J. Cryst. Struct. Theory Appl., 3, 57 (2014); https://doi.org/10.4236/csta.2014.33007
N. Hadi. T. Lamcharfi. F. Abdi and A. Elbasset, Int. J. Dev. Res., 4, 12432 (2017).
P.R. Bueno, W.C. Ribeiro, M.A. Ramírez, J.A. Varela and E. Longo, J. Appl. Phys. Lett., 90, 142912 (2007); https://doi.org/10.1063/1.2720301
M. Subramanian, D. Li, N. Duan, B.A. Reisner and A.W. Sleight, Solid State J. Chem., 151, 323 (2000); https://doi.org/10.1006/jssc.2000.8703
C.C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, M. A. Subramanian, and A.P. Ramirez, Phys. Rev. B, 67, 092106 (2002); https://doi.org/10.1103/PhysRevB.67.092106
X. H. Zheng, J. Xiao, X. Huang, D.P. Tang and X.L. Liu, J. Mater. Sci: Mater. Electron., 22, 1116 (2011); https://doi.org/10.1007/s10854-010-0269-6
T. Yamamoto, H. Igarashi and K. Okazaki, J. Am. Ceram. Soc., 66, 363 (1982); https://doi.org/10.1111/j.1151-2916.1983.tb10050.x
A. Moulson and J.M. Herbert, Electroceramics. Materials, Properties, Applications. Chapman & Hall: London, pp 464 (1990).
A. Mansingh, Mater. Thin Films, 102, 69 (2001); https://doi.org/10.1080/00150199008221466
A.M. Glass, Science, 235, 1003 (1987); https://doi.org/10.1126/science.235.4792.1003
G. Burns and B.A. Scott, Phys. Rev. B, 7, 3088 (1973); https://doi.org/10.1103/PhysRevB.7.3088
K. Limame, S. Sayouri, M.M. Yahyaoui, A. Housni and B. Jaber, Phys. B. Conden. Matt., 494, 26 (2016); https://doi.org/10.1016/j.physb.2016.04.026
J.S. Wright and L.F. Francis, J. Mater. Res., 8, 1712 (1993); https://doi.org/10.1557/JMR.1993.1712
G.R. Fox, J.H. Adair and R.E. Newnham, J. Mater. Sci., 25, 3634 (1990); https://doi.org/10.1007/BF00575398
Y. Ohara, K. Koumoto, T. Shimizu and H. Yanagida, J. Mater. Sci., 30, 263 (1995); https://doi.org/10.1007/BF00352160
J. Xue, D. Wan and J. Wang, J. Mater. Letts., 39, 364 (1999); https://doi.org/10.1016/S0167-577X(99)00036-1
B. Barbier, Ph.D. Thesis, Elaboration et caractérisation de condensateurs à base de CaCu3Ti4O12 à forte permittivité relative pour l’électronique de puissance, T. Université Toulouse III-Paul Sabatier (2009).
K. Limame, Ph.D. Thesis, Elaboration par voie sol-gel e, caractérisation et modélisation des propriétés physiques des matériaux PbTiO3 dopés au La», T. Université Sidi Mohammed Ben Abdellah (2007).
N. Kolev, R.P. Bontchev, M.A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchuk and M.N. Iliev, J. Phys. Rev. B, 66, 132102 (2002); https://doi.org/10.1103/PhysRevB.66.132102
C. Mingxiang, Ph.D. Thesis, Extrinsic Dielectric Relaxation of Colossal Dielectric Constant Material CaCu3Ti4O12, Department of Applied Physics, Polytechnic University, Hong Kong (2011).
K. Chen, Y. Wu, J. Liao, J. Liao and J. Zhu, J. Integr. Ferroelectr., 47, 143 (2008); https://doi.org/10.1080/10584580802089023
J. Liu, R.W. Smith and W.-N. Mei, J. Am. Chem. Soc., 19, 6020 (2007); https://doi.org/10.1021/cm0716553
M. D. Fontana, H. Idrissi, G. E. Kugel and K. J. Wojcik, J. Phys. Condens. Matter., 3, 8695 (1991); https://doi.org/10.1088/0953-8984/3/44/014
F. Li, S.J. Zhang, T.N. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T.R. Shrout and L.-Q. Chen, J. Nat Commun, 7, 13807 (2016); https://doi.org/10.1038/ncomms13807
Y. Dong, Z. Zhou, R. Liang and X. Dong, J. Am. Ceram. Soc., 103, 4785 (2020); https://doi.org/10.1111/jace.17174
V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti, P. Piaggio, I. Gregora, T. Ostapchuk, J. Pokorny and J. Petzelt, J. Eur. Ceram. Soc., 26, 2889 (2006); https://doi.org/10.1016/j.jeurceramsoc.2006.02.005
Z. Yao, H. Liu, H. Hao and M. Cao, J. Appl. Phys., 109, 014105 (2011); https://doi.org/10.1063/1.3525995