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INTRODUCTION

There are large number of applications for ceramic materials
due to their giant relative permittivity, electrical insulating and
electrical conducting properties. Actually, advanced ceramics
such as calcium copper titanate CaCuTi4O12 (CCTO) has become
more and more used for the manufacture of microelectronic
circuits [1,2]. It is widely used in the treatment of radioactive
wastes since these perovskite showed a good  immobilizing
the nuclear wastes [3-6]. Recent studies [7,8] reported that the
dielectric constant of CaCuTi4O12 ceramic is about 105 at room
temperature independence between 1000 and 600 K. The diele-
ctric permittivity remains almost constant as function of frequ-
ency in a range of frequencies from 50 Hz to 206 Hz. These
dielectric properties have made CCTO a very useful material
in the field of microelectronics such as capacitors and memory
devices. Despite the fact that the values of its dielectric constant,
which is very large, are not well understood. It is known that
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the high dielectric response is related with extrinsic effects [9].
Lead titanate (PbTiO3, PT) is perovskite type ferroelectric

material, which has a high curie point (Tc) of 490 ºC and a
large tetragonality of c/a = 1.064 and a small relative permit-
tivity of e/e0 = 200 [10], spontaneous polarization, pyroelectric
and piezoelectric properties [11]. These properties make it a
material applicable in many devices such as ultransonic trans-
ducers [12], thermistors, optical electronic devices and satellite
detections [13]. At room temperature, PbTiO3 crystallizes in
tetragonal perovskite structure [14] and combined with other
oxides it forms materials such as PbLaTiO3 (PLT), Pb(ZrTi)O3

(PZT) and (PbLa) (ZrTi)O3 (PLZT) [15].
Many researchers have studied the processing of PbTiO3

powders by different methods such as sol gel [16], co-preci-
pitation [17], hydrothermal reaction [18]. Ultrafine PbTiO3

precursor powders with high chemical homogeneity and purity
can be synthesized by varying the various processing para-
meters in each chemical route [19].
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In this work, (1-x)CCTO−xPT (x = 0 to100%) ceramics
were prepared by hybrid method. The study of the effect of
lead titanate (PT) on the structural, dielectric and electrical
properties of CCTO with is effect on the nature of transition
phase (1-x)CCTO−xPT was carried out and the results obtained
were discussed.

EXPERIMENTAL

The solid solution (1-x) CCTO−xPT was prepared by solid
state modified method with several steps. In the first step, lead
titanate was prepared by sol-gel methd using lead acetate (99%
purity), Ti{OCH(CH3)2}4 (97% purity) and lactic acid as the
starting materials. In this method, stochiometric of lead acetate
dissolved in distilled water to obtain a homogenous solution
(solution 1) followed by the addition of sol titanium isopro-
poxide in stochiometric amounts to the solution 1 to get solution
2 (lead titanate (PT)).

The PT solution was stirred 1h for homogenization and
heated at 80 ºC in oven for 48 h to obtain a xerogel. The xerogel
was grounded for 30 min and the powder obtained was calcined
at 700 ºC for 4 h. In the second step, CCTO was synthesized
with solid state and the precursors were CaCO3, CuO and TiO2

with high purity. The raw powders for each concentration were
mixed in an agate mortar for 1 h and stirred in acetone for 3 h.
Then the obtained powder was calcined at 1050 ºC for 4 h.

In the final step, [(1-x)CCTO−xPT] was obtained by mixing
the CCTO and PT in a stoichiometric proportion. The resulting
powders were pressed into pellets and sintered at 1000 ºC for
4 h. The XRD and the Rietveld refinement were used to study
the structure of compounds. The crystallographic analysis was
carried using the diffractometer (X Pert-Pro). The data recording
is performed over 5-100º. This type of recording allowed to
use subsequent refine structure by the Rietveld method as well
as the parameters and the group of space of the mesh on the
positions of the atoms in the structure. The Raman spectrum
was recorded at room temperature.

To study the electric and dielectric properties, the sides
of the pellets were metallized with a thin layers of silver lacquer
to form a flat capacitor. The investigations of the microstructure
of the pellets were performed using by a scanning electron micro-
scope (SEM). The capacitance was measured using an HP 4284A
impedance meter operating in the interval frequency of 20 Hz
to 2 MHz and the temperature from room temperature to 500 ºC.

RESULTS AND DISCUSSION

XRD study: Fig. 1a shows the X-ray diffractogram obtained
on pure CCTO, calcined at 1050 ºC for 4 h. It is observed that
the CCTO was well crystallized without having the secondary
phases. Using Rietveld refinement (Fig. 1b), the phase result
shows the formation of cubic phase of CCTO with Im-3 space
group (Table-1), which also confirmed from the literature [20].
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Fig. 1. X-ray diffractograms of CCTO powder obtained calcined at 1050 ºC (4 h) (a) and PT powder obtained by Ritveld (b)

TABLE-1 
REFINED STRUCTURAL PARAMETERS OF THE POWDER OF (1-x) CCTO-x PT 

Cubic phase (Im-3) Tetragonal phase (P4mm) 
X 

a = b = c (Å) Volume (Å3) a = b (Å) C (Å) Volume (Å3) 
0 7.3852 402.7942 – – – 
10 7.3811 402.1270 – – – 
20 7.3787 401.7350 – – – 
30 7.3854 402.8302 3.8352 4.2043 61.8400 
40 7.3910 403.7472 3.9045 4.1000 62.5049 
60 7.3850 402.7648 3.9970 4.1402 66.14387 
70 7.3874 403.1576 4.0046 4.1389 66.3459 
80 7.3893 403.4687 4.0910 4.1371 69.2390 
90 7.4010 405.3883 3.9820 4.1352 65.5800 

100 – – 3.9073 4.1336 63.1063 
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The XRD diffractogram of pure lead titanate (PT, Fig. 2a)
confirmed a pure perovskite phase. The peaks obtained from
Rietveld method (Fig. 2b) shows that all the diffraction peaks
of PT were indexed with the tetragonal phase having P4mm
space group. Present results are in good agreement with the
literature [21].

The X-ray diffraction patterns of (1-x)CCTO−x PT (x =
0.00 to 1.00) powders (Fig. 3a) shows that for x = 0% (CCTO),
the powder crystallizes in the pure cubic perovskite phase.
For x = 10%, the XRD shows no change as compared with
CCTO pattern. While at x = 20%, we can observe an appearance
of a new characterization peaks. All these peaks are indexed
in the tetragonal phase of lead titanate (PT) (Fig. 3b), which
began to appear besides to the cubic phase of CCTO. With the
increasing lead titanate (PT) contents above 20%, there are
coexistence of tetragonal and cubic phase related to PT and
CCTO, respectively. And the peaks intensities of tetragonal
phase increase with the increasing PT content and those of
cubic phase decrease and finally disappeared completely at
x = 100%.

SEM analysis: The scanning electron microscopy (SEM)
micrographs of (1-x)CCTO−xPT sintered at 1000 ºC for 4 h
are shown in Fig. 4. It is well observed from the figure that for
x = 0 to 60%, the grain form is homogenous with quadratic
shape. While at above 60%, the irregular morphology with
various forms of the grains is evidently visible. However, an

appearance of semi-spherical grain with the coexistence of
quadratic grains may be related to the coexistence of two phases
tetragonal and cubic as detected in the XRD diffractogram. On
the other hand, it is clear that an average grain size decreases
with the increase PT contents (Table-2). This decrease is signi-
ficant for high values of PT (x = 80 and 90%).

TABLE-2 
AVERAGE GRAIN SIZE OF (1-x) CCTO-x PT CERAMICS 

PT content (%) Average grain size (µm) 
10 6.93 
20 4.95 
30 4.39 
40 4.28 
50 4.09 
60 3.51 
70 3.27 
80 1.22 
90 1.13 

 
Raman studies: The Raman spectroscopy analysis of (1-x)-

CCTO–xPT (x = 0 to 100%) ceramics is shown in Fig. 5. For
CCTO ceramic (x = 0%), the Raman spectrum indicates the
presence of seven peaks which are also predicted by LDC (lattice
dynamics calculations) as reported by Kolev et al. [22,23] and
with the experimental values obtained. The Ag symmetry (TiO6

rotation like) are indicated by the two bands at 448 and 509
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Fig. 2. (a) X-ray diffractogram of PT powder calcined at 700 °C (4 h); (b) X-ray diffractogram of PT powder obtained by Rietveld
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Fig. 3. (a) Characterization by XRD of the different compositions of (1-x) CCTO-xPT (x = 0-100); (b) X-ray diffractogram of the powder of
(1-x) CCTO-x PT (x = 20%)
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Fig. 4. SEM images of (1-x)CCTO-x PT ceramics, sintered at 1000 °C for 4 h
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Fig. 5. Raman spectra of (1-x)CCTO-x PT powders

cm–1. And the band at 579 cm–1 is attributed to Fg symmetry
mode (O-Ti-O anti stretching) [24]. While the band at 250 cm-1

is related to CuO [25] but does not appear in our XRD results.
With the increase content of PT, it was observed that an

appearance of seven new bands at 215.07, 288.31, 345.6, 445,
503, 622 and 721 cm-1 assigned to {E(2TO), B1 + E, A1(2TO),
E(2LO) + A(2LO), E(3TO), A1(3TO) and E(3TO) + A1(3TO)},
respectively. All these bands are attributed to the tetragonal

phase of PT powder [25,26]. From x = 30 to 70%, the intensity
of tetragonal PT phase increases while for CCTO bands decre-
ases. And at x = 100%, all the peaks are assigned to the tetra-
gonal PT phase.

Dielectric properties: The evolution of the dielectric
constant versus temperature (room temperature-600 ºC) of the
(1-x)CCTO–xPT (for x = 0 to 100%) at different frequencies
(Fig. 6). With the increase of temperature, the dielectric constant
increase up to Tm then systems become paraelectric and the
dielectric constant decreases. It was also observed the two
dielectric anomalies T1 and T2 for all the prepared ceramics.
These two anomalies shift to the high temperature with the
increase of frequencies indicating a relaxor-like behaviour. The
relaxation behaviour is attributed to the PT addition, which
causes a micro-inhomogeneity [26,27]. To understand the nature
of this transition many researches are still under investigation.
These relaxor behaviour was also reported recently by Dong
et al. [28] for BiScO3-PbTiO3 ceramics.

As shown in Table-3, the first dielectric anomaly at T1 is
observed at lower temperature about 311 ºC and shifts to the
lower temperature with increasing of PT contents. And the
dielectric constant value corresponding decreases with the incr-
ease of PT content from 10 to 90%. While the second anomaly
at temperature T2 superior to T1 is related to the phase transition
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TABLE-3 
DIELECTRIC CONSTANT AND TEMPERATURE  

TRANSITION OF THE TWO ANOMALIES OF  
(1-x) CCTO-xPT CERAMICS SINTERED AT 550 Hz 

ε'max Tmax (°C) 
X (%) 

ε'max1 ε'max2 T1 T2 
0 100228 – 360 – 
20 57073 26962 391 468 
40 12964 14068 395 446 
60 7503 12466 337 461 
70 5703 6471 268 471 
90 10049 122117 237 480 

 
of PT. It is also observed a fluctuate evolution of T2 and the
dielectric constant correspondent for all the samples (Table-3).

The dielectric transition has a large character showing a
diffuse behaviour especially for x = 40% and 70% of PT content.
The broad dielectric phase transition is due to the PT addition,
which change the tetragonality of the samples, so different
Curie temperatures present a broad dielectric transition in these
ceramics [29].

The degree of relaxation behaviour could be estimated
by the empirical parameter:

∆Ti = Ti(5000 Hz) – Ti (500 Hz)

where Ti (500 Hz) and Ti (5000 Hz) are temperatures corres-
pond to the maximum dielectric constant at frequencies of
500 Hz and 5000 Hz, respectively. The Ti value was calculated
for all samples (Table-4). It is observed that as x increases,
∆T1 and ∆T2 are greater than 0 until, it reaches a maximum
value at x = 90%. This means that the two phases transition T1

and T2 exhibit a relaxation phenomenon, which became very
important at x = 90% of PT content.

TABLE-4 
TEMPERATURE DIFFERENCE BETWEEN 5000 Hz AND 500 Hz 

AS A FUNCTION OF x FOR (1-x)CCTO-xPT (x = 10-90%) 

X (%) ∆T1 500 (Hz) ∆T2 5000 (Hz) 
10 27 – 
20 22 2 
40 23 12 
60 27 14 
70 17 9 
90 45 22 

 
To obtain more detail on conduction and relaxation behav-

iour of (1–x)CCTO–xPT ceramics, the log real part of AC
conductivity vs. frequency at 320 ºC was studied. For all samples,
the frequency conductivity spectra indicates two regions–one
in the lower frequency and the other in the higher frequency
(Fig. 7). At lower frequencies, the conductivity is almost constant
as function of frequency because the electric field cannot change
the movement of charge carriers. This region is related to the
grain boundary effect. While in the high frequencies region,
the conductivity indicated frequency dispersion, which is due
to the hopping of high weight charge. On the other hand, the
addition of PT caused a decrease in conductivity, this behaviour
is perhaps related to the lower electrical conductivity contri-
bution of impurity phases such as CuO and/or oxygen vacancy.
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Fig. 7. Variation of conductivity as function of frequency for (1-x) CCTO-
x PT (x = 0-100%) ceramics at 320 °C

The conductivity of these composites versus frequency follow
the Jonscher’s law.

The Cole-Cole (Z′′ versus Z′) plot of these composites is
fitted using a combination of R-C (in parallel) in series with
R-CPE (in parallel) is shown in Fig. 8 (inset). The complex
impedance Z* is related to the grain and grain-boundary para-
meters by the equation Z* = (Rg

-1 + jωCg)-1 + (Rgb
-1 + jωCgb)-1 [30],

where Rb, Cb, Rgb, Cgb are the grain and grain boundary para-
meters. The Cole-Cole diagram (Fig. 8) shows the presence
of two semi-circles. The first one attributed to the grain effect
while the second is related to the grain boundary effect.
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The grain boundaries resistance can be determined by the
intersection of semi-circle with Z′′ axis in high frequency region.
It is found that the grain boundary resistance increases with
the increase of PT content. The same behaviour is also observed
for the grain resistance accompanied with the increase in condu-
ctivity. The center of semi-circles is on the real impedance
axis, suggesting that the relaxation is of Debye type.

Conclusion

The structural and dielectric properties of CCTO-PT comp-
osite materials have been investigated. The Rietveld refinement

Vol. 33, No. 6 (2021) Synthesis and Physico-chemical Characterization of Solid Solution (1-x)CCTO-xPbTiO3  1213



showed a predominant of tetragonal phase (PT phase) in benefit
of cubic phase (CCTO phase) with the increase of PT content.
Raman results also confirmed the XRD results, whereas the
SEM images show a change in grain form from quadratic to
semi-spherical and a grain size reduction with the increase in
the PT content. The dielectric measurements have been investi-
ated as function of temperature and showed two dielectric
anomalies with a relaxation behaviour and present a diffuse
character. And the electrical properties show that the conductivity
decreases and the resistance of grain boundaries increases with
the increase of lead titanate (PT) addition.
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