Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Single Crystal XRD and Quantum Chemical Studies on Non-Proton Transfer Co-Crystals of 2-Amino-5-nitropyridine with Phenylthioacetic Acid and Barbituric Acid
Corresponding Author(s) : S. Kumaresan
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
New co-crystals of 2-amino-5-nitropyridine with phenylthioacetic acid or barbituric acid have been grown by gradual evaporation approach under room temperature. The molecular structures of the present compounds were resolved by single crystal X-ray diffraction. The vibration spectral measurement was carried out using FT-IR spectroscopy. The X-ray studies show that the crystal packing is control by N–H···O and O–H···N for 2-amino-5-nitropyridine: phenylthioacetic acid (2A5NPPTAA) and N–H···O and N–H···N for 2-amino-5-nitropyridine: barbituric acid (2A5NPBBA), intermolecular hydrogen bonds leading to hydrogen bonded co-crystal. In 2A5NPPTAA, 2-amino 5-nitropyridine (2A5NP) is linked with carboxyl group in phenylthioacetic acid (PTAA) through N–H···O intermolecular hydrogen bond to form ring R22(8) motifs. The N–H···O and O–H···N intermolecular hydrogen bonds are leading to a ring R44(8) motif. These ring motifs lead to the hydrophilic layers at z = 0 and 1 which are intermediate between the hydrophobic layer at 1/2. In the 2A5NPBBA, the N–H···O and N–H···N intermolecular hydrogen bonds form a heterosynthon of two R22(8) motifs. This ring motif is connected with nitro group in 2-amino-5-nitropyridine by N–H···O hydrogen bond to form a rare bifurcated ring R34(8) motif. These two ring motifs are further linked in barbituric (BBA) acid via N–H···O hydrogen bond to form R33(12) motifs. This molecular aggregations lead parallel to the 202 and`20`2 crystallographic smooth making strong intensity peaks for these plain on X-ray diffraction. Computative optimizations of the molecules were done by density functional theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The enhance molecular division and computed vibration spectrum are approximate experiment results which display express accepting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.R. Desiraju, CrystEngComm, 5, 466 (2003); https://doi.org/10.1039/b313552g.
- C.C. Sun and H. Hou, Cryst. Growth Des., 8, 1575 (2008); https://doi.org/10.1021/cg700843s.
- A.V. Trask, W.D.S. Motherwell and W. Jones, Cryst. Growth Des., 5, 1013 (2005); https://doi.org/10.1021/cg0496540.
- A.N. Sokolov, T.L. Friscic and R. MacGillivray, J. Am. Chem. Soc., 128, 2806 (2006); https://doi.org/10.1021/ja057939a.
- M.L. Cheney, G.J. McManus, J.A. Perman, Z. Wang and M.J. Zaworotko, Cryst. Growth Des., 7, 616 (2007); https://doi.org/10.1021/cg0701729.
- N.A. Caballero, F.J. Meléndez, A. Niño and C. Muñoz-Caro, J. Mol. Model., 13, 579 (2007); https://doi.org/10.1007/s00894-007-0184-9.
- N. Stanley, P.T. Muthiah, S.J. Geib, P. Luger, M. Messerschmidt and M. Weber, Tetrahedron, 61, 7201 (2005); https://doi.org/10.1016/j.tet.2005.05.033.
- D.E. Lynch and G.D. Jones, Acta Crystallogr. B, 60, 748 (2004); https://doi.org/10.1107/S0108768104023791.
- H. Koshima, M. Hamada, I. Yagi and K. Uosaki, Cryst. Growth Des., 1, 467 (2001); https://doi.org/10.1021/cg015542m.
- Y. Le Fur, M. Bagieu-Beucher, R. Masse, J.-F. Nicoud and J.-P. Lévy, Chem. Mater., 8, 68 (1996); https://doi.org/10.1021/cm9501731.
- J.T. Bojarski, J.L. Mokrosz, H.J. Barton and M.H. Paluchowska, in ed.: A.R. Katritzky, Recent Progress in Barbituric Acid Chemistry in Advances in Heterocyclic Chemistry, Academic Press, Inc., New York, vol. 38 (1985).
- G.L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, Oxford, edn 4, pp. 752, (2009).
- J.T. Bojarski, J.L. Mokrosz, H.J. Bartoñ and M.H. Paluchowska, Adv. Heterocycl. Chem., 38, 229 (1985); https://doi.org/10.1016/S0065-2725(08)60921-6.
- K.S. Gulliya, Uses for Barbituric Acid Analogs, US Patent 5869494A (1999).
- K. Sakai, and Y. Satoh, Barbituric Acid Derivative and Preventive and Therapeutic Agent for Bone and Cartilage Containing the same, International Patent, W09950252A3 (2000).
- K. Tanaka, X. Chen, T. Kimura and F. Yoneda, Tetrahedron Lett., 28, 4173 (1987); https://doi.org/10.1016/S0040-4039(00)95570-9.
- G. Cerbai and G.F. di Paco Boll, Chim. Farm., 103, 653 (1964).
- M. Solotorovsky, Am. Rev. Tuberc., 74, 68 (1956).
- M. Aydin, N. Arsu, Y. Yagci, S. Jockusch and N.J. Turro, Macromolecules, 38, 4133 (2005); https://doi.org/10.1021/ma047560t.
- F. Turtaut, S. Ouahrani-Bettache, J.-L. Montero, S. Köhler and J.-Y. Winum, MedChemComm, 2, 995 (2011); https://doi.org/10.1039/c1md00146a.
- G. Cerbai and G.F. di Paco, Dissert. Pharm. Pharmacol., 20, 589 (1968).
- Y. Ohshiro, N. Ando, M. Komatsu and T. Agawa, Synthesis, 276 (1985); https://doi.org/10.1055/s-1985-31175.
- M. Kennedy, M.A. McKervey, A.R. Maguire and S.J. Naughton, J. Chem. Soc. Perkin Trans. I, 1041 (1990); https://doi.org/10.1039/P19900001041.
- M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Chem. Soc. Chem. Commun., 362 (1978); https://doi.org/10.1039/c39780000362.
- M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Org. Chem., 45, 2945 (1980); https://doi.org/10.1021/jo01303a005.
- F.G. Bordwell, M.D. Wolfinger and J.B. O’Dwyer, J. Org. Chem., 39, 2516 (1974); https://doi.org/10.1021/jo00931a011.
- J.C. Clinet and G. Balavoine, Tetrahedron Lett., 28, 5509 (1987); https://doi.org/10.1016/S0040-4039(00)96766-2.
- P. Magnus, M. Giles, R. Bonnert, C.S. Kim, L. McQuire, A. Merritt and N.J. Vicker, J. Am. Chem. Soc., 114, 4403 (1992); https://doi.org/10.1021/ja00037a058.
- (a) T. Takahashi, S. Hahiguchi, K. Kasuga and J. Tsuji, J. Am. Chem. Soc., 100, 7424 (1978); https://doi.org/10.1021/ja00491a056. (b) M. Wada, T. Shigehisa and K.Y. Akiba, Tetrahedron Lett., 26, 5191 (1985); https://doi.org/10.1016/S0040-4039(00)98900-7.
- S. Kumaresan, M. Indrani, R. Ramasubramanian, R. Subha, P.E. Karthik, S. Athavan and F.R. Fronzcek, Int. J. Curr. Chem., 1, 163 (2010).
- J.-T. Li, H.-G. Dai, D. Liu and T.-S. Li, Synth. Commun., 36, 789 (2006); https://doi.org/10.1080/00397910500451324.
- Bruker APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
- A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); https://doi.org/10.1107/S090744490804362X.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT (2013).
- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212.
- P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- R. Dennington, T. Keith and J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission (2009).
- F.P. Anderson, J.F. Gallagher, P.T.M. Kenny and A.J. Lough, Acta Crystallogr. Sect. E Struct. Rep. Online, 61, o1350 (2005); https://doi.org/10.1107/S1600536805010433.
- C.B. Aakeroy, A.M. Beatty, M. Nieuwenhuyzen and M. Zou, J. Mater. Chem., 8, 1385 (1998); https://doi.org/10.1039/a800073e.
- I. Sidir, Y.G. Sidir, M. Kumalar and E. Tasal, J. Mol. Struct., 964, 134 (2010); https://doi.org/10.1016/j.molstruc.2009.11.023.
- G. Ploug-Sørensen and E.K. Andersen, Acta Crystallogr. C, 39, 112 (1983); https://doi.org/10.1107/S0108270183003790.
- M. Kurt, M. Yurdakul and S. Yurdakul, J. Mol. Struct. THEOCHEM, 711, 25 (2004); https://doi.org/10.1016/j.theochem.2004.07.034.
- V. Krishnakumar and R.J. Xavier, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 253 (2005); https://doi.org/10.1016/j.saa.2004.03.038.
- H. Lampert, W. Mikenda and A. Karpfen, J. Phys. Chem. A, 101, 2254 (1997); https://doi.org/10.1021/jp962933g.
- C.N. Banwell and E.M. Mccash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill, New Delhi, edn 4 (1995)
References
G.R. Desiraju, CrystEngComm, 5, 466 (2003); https://doi.org/10.1039/b313552g.
C.C. Sun and H. Hou, Cryst. Growth Des., 8, 1575 (2008); https://doi.org/10.1021/cg700843s.
A.V. Trask, W.D.S. Motherwell and W. Jones, Cryst. Growth Des., 5, 1013 (2005); https://doi.org/10.1021/cg0496540.
A.N. Sokolov, T.L. Friscic and R. MacGillivray, J. Am. Chem. Soc., 128, 2806 (2006); https://doi.org/10.1021/ja057939a.
M.L. Cheney, G.J. McManus, J.A. Perman, Z. Wang and M.J. Zaworotko, Cryst. Growth Des., 7, 616 (2007); https://doi.org/10.1021/cg0701729.
N.A. Caballero, F.J. Meléndez, A. Niño and C. Muñoz-Caro, J. Mol. Model., 13, 579 (2007); https://doi.org/10.1007/s00894-007-0184-9.
N. Stanley, P.T. Muthiah, S.J. Geib, P. Luger, M. Messerschmidt and M. Weber, Tetrahedron, 61, 7201 (2005); https://doi.org/10.1016/j.tet.2005.05.033.
D.E. Lynch and G.D. Jones, Acta Crystallogr. B, 60, 748 (2004); https://doi.org/10.1107/S0108768104023791.
H. Koshima, M. Hamada, I. Yagi and K. Uosaki, Cryst. Growth Des., 1, 467 (2001); https://doi.org/10.1021/cg015542m.
Y. Le Fur, M. Bagieu-Beucher, R. Masse, J.-F. Nicoud and J.-P. Lévy, Chem. Mater., 8, 68 (1996); https://doi.org/10.1021/cm9501731.
J.T. Bojarski, J.L. Mokrosz, H.J. Barton and M.H. Paluchowska, in ed.: A.R. Katritzky, Recent Progress in Barbituric Acid Chemistry in Advances in Heterocyclic Chemistry, Academic Press, Inc., New York, vol. 38 (1985).
G.L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, Oxford, edn 4, pp. 752, (2009).
J.T. Bojarski, J.L. Mokrosz, H.J. Bartoñ and M.H. Paluchowska, Adv. Heterocycl. Chem., 38, 229 (1985); https://doi.org/10.1016/S0065-2725(08)60921-6.
K.S. Gulliya, Uses for Barbituric Acid Analogs, US Patent 5869494A (1999).
K. Sakai, and Y. Satoh, Barbituric Acid Derivative and Preventive and Therapeutic Agent for Bone and Cartilage Containing the same, International Patent, W09950252A3 (2000).
K. Tanaka, X. Chen, T. Kimura and F. Yoneda, Tetrahedron Lett., 28, 4173 (1987); https://doi.org/10.1016/S0040-4039(00)95570-9.
G. Cerbai and G.F. di Paco Boll, Chim. Farm., 103, 653 (1964).
M. Solotorovsky, Am. Rev. Tuberc., 74, 68 (1956).
M. Aydin, N. Arsu, Y. Yagci, S. Jockusch and N.J. Turro, Macromolecules, 38, 4133 (2005); https://doi.org/10.1021/ma047560t.
F. Turtaut, S. Ouahrani-Bettache, J.-L. Montero, S. Köhler and J.-Y. Winum, MedChemComm, 2, 995 (2011); https://doi.org/10.1039/c1md00146a.
G. Cerbai and G.F. di Paco, Dissert. Pharm. Pharmacol., 20, 589 (1968).
Y. Ohshiro, N. Ando, M. Komatsu and T. Agawa, Synthesis, 276 (1985); https://doi.org/10.1055/s-1985-31175.
M. Kennedy, M.A. McKervey, A.R. Maguire and S.J. Naughton, J. Chem. Soc. Perkin Trans. I, 1041 (1990); https://doi.org/10.1039/P19900001041.
M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Chem. Soc. Chem. Commun., 362 (1978); https://doi.org/10.1039/c39780000362.
M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Org. Chem., 45, 2945 (1980); https://doi.org/10.1021/jo01303a005.
F.G. Bordwell, M.D. Wolfinger and J.B. O’Dwyer, J. Org. Chem., 39, 2516 (1974); https://doi.org/10.1021/jo00931a011.
J.C. Clinet and G. Balavoine, Tetrahedron Lett., 28, 5509 (1987); https://doi.org/10.1016/S0040-4039(00)96766-2.
P. Magnus, M. Giles, R. Bonnert, C.S. Kim, L. McQuire, A. Merritt and N.J. Vicker, J. Am. Chem. Soc., 114, 4403 (1992); https://doi.org/10.1021/ja00037a058.
(a) T. Takahashi, S. Hahiguchi, K. Kasuga and J. Tsuji, J. Am. Chem. Soc., 100, 7424 (1978); https://doi.org/10.1021/ja00491a056. (b) M. Wada, T. Shigehisa and K.Y. Akiba, Tetrahedron Lett., 26, 5191 (1985); https://doi.org/10.1016/S0040-4039(00)98900-7.
S. Kumaresan, M. Indrani, R. Ramasubramanian, R. Subha, P.E. Karthik, S. Athavan and F.R. Fronzcek, Int. J. Curr. Chem., 1, 163 (2010).
J.-T. Li, H.-G. Dai, D. Liu and T.-S. Li, Synth. Commun., 36, 789 (2006); https://doi.org/10.1080/00397910500451324.
Bruker APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA (2008).
G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); https://doi.org/10.1107/S090744490804362X.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT (2013).
H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212.
P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
R. Dennington, T. Keith and J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission (2009).
F.P. Anderson, J.F. Gallagher, P.T.M. Kenny and A.J. Lough, Acta Crystallogr. Sect. E Struct. Rep. Online, 61, o1350 (2005); https://doi.org/10.1107/S1600536805010433.
C.B. Aakeroy, A.M. Beatty, M. Nieuwenhuyzen and M. Zou, J. Mater. Chem., 8, 1385 (1998); https://doi.org/10.1039/a800073e.
I. Sidir, Y.G. Sidir, M. Kumalar and E. Tasal, J. Mol. Struct., 964, 134 (2010); https://doi.org/10.1016/j.molstruc.2009.11.023.
G. Ploug-Sørensen and E.K. Andersen, Acta Crystallogr. C, 39, 112 (1983); https://doi.org/10.1107/S0108270183003790.
M. Kurt, M. Yurdakul and S. Yurdakul, J. Mol. Struct. THEOCHEM, 711, 25 (2004); https://doi.org/10.1016/j.theochem.2004.07.034.
V. Krishnakumar and R.J. Xavier, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 253 (2005); https://doi.org/10.1016/j.saa.2004.03.038.
H. Lampert, W. Mikenda and A. Karpfen, J. Phys. Chem. A, 101, 2254 (1997); https://doi.org/10.1021/jp962933g.
C.N. Banwell and E.M. Mccash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill, New Delhi, edn 4 (1995)