

Single Crystal XRD and Quantum Chemical Studies on Non-Proton Transfer Co-Crystals of 2-Amino-5-nitropyridine with Phenylthioacetic Acid and Barbituric Acid

V. VELMURUGAN¹, S. KUMARESAN^{1,*}, B. RAVINDRAN DURAI NAYAGAM², N. BHUVANESH³, S. ATHIMOOLAM⁴ and P. PALANISAMY⁵

¹Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, India

²Department of Chemistry, Pope's College, Sawyerpuram-628 251, India

³Department of Chemistry, Texas A & M University, College Station, Texas-77842, U.S.A.

⁴Department of Physics, University College of Engineering, Anna University, Nagercoil-629004, India

⁵Department of Chemistry, Pioneer Kumaraswamy College, Nagercoil-629 003, India

*Corresponding author: E-mail: skumarmsu@yahoo.com

Received: 26 May 2018;	Accepted: 2 July 2018;	Published online: 31 July 2018;	AJC-19030
------------------------	------------------------	---------------------------------	-----------

New co-crystals of 2-amino-5-nitropyridine with phenylthioacetic acid or barbituric acid have been grown by gradual evaporation approach under room temperature. The molecular structures of the present compounds were resolved by single crystal X-ray diffraction. The vibration spectral measurement was carried out using FT-IR spectroscopy. The X-ray studies show that the crystal packing is control by N–H···O and O–H···N for 2-amino-5-nitropyridine: phenylthioacetic acid (2A5NPPTAA) and N–H···O and N–H···N for 2-amino-5nitropyridine: barbituric acid (2A5NPBBA), intermolecular hydrogen bonds leading to hydrogen bonded co-crystal. In 2A5NPPTAA, the 2-amino 5-nitropyridine (2A5NP) is linked with carboxyl group in phenylthioacetic acid (PTAA) through N–H···O intermolecular hydrogen bond to form ring $R_2^2(8)$ motifs. The N–H···O and O–H···N intermolecular hydrogen bonds are leading to a ring $R_4^4(8)$ motif. These ring motifs lead to the hydrophilic layers at z = 0 and 1 which are intermediate between the hydrophobic layer at 1/2. In the 2A5NPBBA, the N–H···O and N–H···N intermolecular hydrogen bonds form a heterosynthon of two $R_2^2(8)$ motifs. This ring motif is connected with nitro group in 2-amino-5-nitropyridine by N–H···O hydrogen bond to form a rare bifurcated ring $R_3^4(8)$ motif. These two ring motifs are further linked in barbituric (BBA) acid *via* N–H···O hydrogen bond to form $R_3^3(12)$ motifs. This molecular aggregations lead parallel to the 202 and 202 crystallographic smooth making strong intensity peaks for these plain on X-ray diffraction. Computative optimizations of the molecules were done by density functional theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The enhance molecular division and computed vibration spectrum are approximate experiment results which display express accepting.

Keywords: 2-Amino-5-nitropyridine, Phenylthioacetic acid, Barbituric acid, Co-crystal.

INTRODUCTION

Molecular co-crystals have obtained importance due to their ability towards physico-chemical properties [1]. Development of physical property of co-crystals like solubility, dissolution rate, melting point, colour, *etc.* require proper manipulative of co-formers [2]. Uses of co-crystals include pharmaceutical materials [3], electronic- and visible materials *etc.* [4,5]. Aminopyridines are a substantiate class of bio-active compounds [6]. The repetition of the hydrogen-bonded motifs leads to supramolecular architectures playing a considerable role in crystal engineering [7,8]. Koshima *et al.* [9] described the syntheses and NLO properties of the co-crystals of 2amino-5-nitropyridine and benzenesulfonic acids. Fur *et al.* [10] have reported the noncentrosymmetric structures based on 2-amino-5-nitropyridine and chloroacetic acid assemblies. The chemistry of derivatives of barbituric acid is commonly known as barbiturates. The barbiturate is combining with a no. of biological activities such as antibacterial, hypertensive, sedative and as local anesthetic drugs [11-13]. Recent report indicate their applications as antitumor, anticancer and anti AIDS agents [14-16].

Phenylthioacetic acid (PTAA) is a colourless compound, soluble in alcohols. It can be prepared by the subsitution of

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, which allows others to copy and redistribute the material in any medium or format, remix, transform, and build upon the material, as long as appropriate credit is given and the new creations are licensed under the identical terms.

sodium chloroacetate with thiophenol or by the analyse of bromoacetic acid with thallium(I) benzothiolate. Derivatives of PTAA (*o*-hydroxyphenylthio)acetic- and benzal-*bis*-(β thiopropionic) acid show antituberculotic activity [17-19]. Ph-S-CH₂-COOH is used as a free radical quencher in laser flash photolysis experiments [20]. Bacterial infections are commonly conduct with antibiotic chemotherapy. The biological targets of these antibiotics are at the origins of appearance of contrary bacterial strains. Recently, the development of new approaches, such as the 'antivirulence strategy' leads the medicinal chemist to describe novel targets with a reduced probability of resistance development. Virulence factors, such as enzymes involved in the biosynthesis of amino acids, have been approve as such targets [21]. Compounds containing S-aryl ketones are a new class of hesitantly dehydrogenise inhibitors [22].

Phenylthioacetic acid is a fabricated precursor for a variety of Ph-S-containing compounds such as PhSCH₂=C=O [23], PhSCH₂CON=C=S [23], PhSCH₂CO₂Me [24], PhSCH₂NO₂ [25,26], MeCH=C(NO₂)SPh [25,26], PhSCHClCO₂H [27], PhSCH₂Cl [27] and 2-(phenylthio)methyl-1-oxazolidine derivatives [28].

Phenylthioacetic acid has two active sites, the carboxylic acid group and the active methylene group, given that a useful method for construct various cyclic compound [29]. It generates a dianion by the action of equiv of butyl-lithium or lithium iisopropylamide (LDA). Caffeine: β -phenylthiopropionic acid co-crystal was prepared and characterized by Kumaresan *et al.* [30].

EXPERIMENTAL

The FT-IR spectra were record in pellet form with spectral grade KBr on a JASCO FT-IR 410 spectrometer in the area 4000-400 cm⁻¹. The single crystal XRD structures of 2A5NPPTAA and 2A5NPBBA are ascertained using a BRUKER APEX 2

X-ray (three-circle) diffractometer. Amount of data sets were composed at room temperature on a BRUKER SMART APEX 2 X-ray diffractometer.

Synthesis and crystal growth of co-crystal PTAA/BBA with 2A5NP: Equimolar quantities of phenylthioacetic acid (PTAA) and 2-amino-5-nitropyridine (2A5NP) were dissolved in 1:1 v/v aq. methanol. One solution be slowly added into the other with stirring and allow to stand at room temperature. Slow evaporation of the mixture under eminent conditions yield colourless crystals of 2A5NPPTAA in 5 days (Yield: 76 %). Similarly barbituric acid (BBA) and 2-amino-5-nitropyridine (2A5NP) were dissolved individually in 1:1 v/v aqueous methanol. One solution was gradually added into the further with stirring and allowed to stand at room temperature. Slow evaporation solution growth technique of the mixture under ambient conditions yield colourless crystals of 2A5NPBBA in 4 days (Yield: 68 %). The crystallographic data and structure refinement parameters of both crystals are given in Table-1.

X-ray structure: The crystal structures were determined using a BRUKER APEX 2 X-ray (three circles) diffractometer [31]. The absorption correction carried out using the programme SADABS. The structure solution was acquired using SHELXTL (XS) [32] and absence of additional symmetry was proved using PLATON [33]. Olex 2 was utilized for the final data presentation and structure plots [34].

Computational studies: The correct molecular structure and vibrational spectra for 2A5NPPTAA and 2A5NPBB molecules were carried out theoretically by 6-311++ G(d,p) level on an Intel Core i5/3.20 GHz computer using Gaussian 09W [35] program package without any constraint [36]. Initial geometry was taken from the single crystal X-ray studies and it was optimized by Hartee-Fock (HF) method using the 6-311++G (d,p) basis set (Table-2). The molecular geometries be also optimized by density functional theory (DFT) using

CRYSTALLOGRAPHIC DATA AND STRUCTURE REFINEMENT PARAMETERS						
	2A5NPPTAA	2A5NPBB				
Empirical formula	$C_{13}H_{13}N_{3}O_{4}S$	$C_{14}H_{14}N_8O_7$				
Formula weight	307.32	406.33				
Temperature	110.15 K	123.15 K				
Wavelength	0.71073 Å	0.71073 Å				
Crystal system, space group	Triclinic, P-1	Monoclinic, P2 ₁ /n				
Unit cell dimensions	$a = 11.805 (2) \text{ Å}; \alpha = 93.166 (2)^{\circ}$	a = 7.777 (2) Å				
	b = 12.188 (5) Å; β = 90.086 (2)°	b = 17.471 (5) Å; β = 95.209 (3)°				
	$c = 15.094 (3) \text{ Å}; \gamma = 107.398 (2)^{\circ}$	c = 12.503 (3) Å				
Volume	2068.8 (6) Å ³	1691.6 (8) Å ³				
Z, Calculated density	6, 1.480 Mg/m ³	4, 1.595 Mg/m ³				
Absorption coefficient	0.255 mm ⁻¹	0.131 mm ⁻¹				
F(000)	960	840				
Crystal size	$0.56 \times 0.19 \times 0.18$ mm	$0.57 \times 0.32 \times 0.21 \text{ mm}$				
Theta range for data collection	2.00 to 27.47°	2.00 to 27.47°				
Limiting indices	$-15 \le h \le 15, -15 \le k \le 15, 0 \le 1 \le 19$	$-10 \le h \le 10, -22 \le k \le 22, -14 \le 1 \le 16$				
Reflections collected/unique	14786/14786 [R(int) =]	14547/3841 [R(int) = 0.0368]				
Completeness to $\theta = 25.242$	99.9 %	99.8 %				
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²				
Data/restraints/parameters	14786/0/572	3841/0/262				
Goodness-of-fit on F ²	0.988	1.017				
Final R indices $[I>2\sigma(I)]$	R1 = 0.0614, $wR2 = 0.1517$	R1 = 0.0395, $wR2 = 0.0901$				
R indices (all data)	R1 = 0.0760, wR2 = 0.1650	R1 = 0.0565, wR2 = 0.0991				
Largest diff. peak and hole	0.747 and -0.481 e.Å ⁻³	0.235 and -0.265 e.Å ⁻³				

TABLE-1

	TABLE-2							
		ANT OPTIMIZE	D MOLECULAR	GEOMETRICAL F	RAMEWORK FC	OR skv2		
	ZASNPPIAA [Bo	HE/6-311++	B3I VD/6		ZASNPBB [Bo	HE/6	B3I VD/6	
Atom connected	Experimental	G(d,p)	311++G(d,p)	Atom connected	Experimental	311++G(d,p)	311++G(d,p)	
C5-S1	1.773 (2)	1.789	1.786	C8-O1	1.222 (2)	1.202	1.234	
C16–S1	1.809 (2)	1.819	1.824	C9-O2	1.218 (2)	1.185	1.211	
C19=02 C19=03	1.228 (3)	1.19	1.323	C13-03 C8-N4	1.212(2) 1.370(2)	1.363	1.374	
C5–C6	1.392 (3)	1.389	1.399	C9-N4	1.365 (2)	1.375	1.388	
C5-C14	1.402 (3)	1.389	1.404	C8-N6	1.369 (2)	1.363	1.374	
C6–C8	1.386 (3)	1.386	1.396	C13–N6	1.373(2)	1.375	1.388	
C8-C10	1.393 (4)	1.385	1.391	C9-C10 C10 C12	1.501 (2)	1.509	1.516	
C10-C12 C12-C14	1.385 (4)	1.385	1.390	N20-014	1.301(2) 1.235(2)	1.309	1.310	
C16-C19	1.505 (3)	1.507	1.515	N20-015	1.230 (2)	1.189	1.226	
O20-N26	1.232 (3)	1.190	1.228	C21-N16	1.349 (2)	1.33	1.352	
O21-N26	1.232 (3)	1.190	1.228	C27–N16	1.331 (2)	1.321	1.333	
C27-N22	1.334 (3)	1.337	1.345	C21-N17	1.342 (2)	1.343	1.352	
C27-N25	1.357(3) 1.321(3)	1.334	1.357	C26-N20	1.435 (2)	1.445	1.458	
$C_{32} = N_{25}^{-1}$	1.331(3) 1 445(3)	1.521	1.555	$C_{21} = C_{22}$	1.411(2) 1 358(2)	1.414	1.410	
C27-C28	1.416 (3)	1.417	1.421	C24-C26	1.396 (2)	1.397	1.400	
C28-C30	1.357 (3)	1.360	1.372	C26-C27	1.372 (2)	1.376	1.389	
C30–C32	1.401 (3)	1.399	1.402	O29-N35	1.233 (2)	1.191	1.229	
C32–C33	1.375 (3)	1.374	1.387	O30–N35	1.230(2)	1.189	1.226	
C5 S1 C16	101.0 (1)	00	102.2	C36–N31	1.349 (2)	1.33	1.352	
$C_{3} = S_{1} = C_{10}$	101.9(1) 124.4(2)	99 120 3	102.3	C42-IN31 C36_N32	1.327(2) 1.341(2)	1.321	1.333	
S1-C5-C14	124.4(2) 116.2(2)	120.3	115.5	C30-IN32 C41-N35	1.341(2) 1.447(2)	1.445	1.458	
C6-C5-C14	119.4 (2)	119.5	119	C36–C37	1.411 (2)	1.414	1.418	
C5-C6-C8	119.8 (2)	120.2	120.1	C37–C39	1.365 (2)	1.362	1.374	
C6–C8–C10	120.9 (2)	120.1	120.8	C39–C41	1.391 (2)	1.397	1.400	
C8-C10-C12	119.1 (2)	119.9	119.2	C41-C42	1.374 (2)	1.376	1.389	
C10-C12-C14	120.7(2) 120.1(2)	120.1	120.5	C8 - N4 - C9	120.3(1) 125.8(1)	126.5	126.3	
S1-C16-C19	120.1(2) 110.1(2)	111.6	110.4	01-C8-N4	123.8(1) 121.4(1)	120.5	120.5	
02–C19–O3	125.0 (2)	123.7	124.5	01-C8-N6	121.7 (1)	121.4	121.3	
O2-C19-C16	122.9 (2)	124.8	124.1	N4-C8-N6	117.0(1)	117.1	117.5	
O3–C19–C16	112.1 (2)	111.5	111.4	O2-C9-N4	120.8 (1)	121.2	121.1	
C27–N25–C33	119.4 (2)	118.9	119.1	02-C9-C10	122.3 (1)	122.3	122.7	
020-N26-021 020-N26-C32	123.0(2) 118.4(2)	124.0	124.6	N4-C9-C10 C9-C10-C13	116.9(1) 116.7(1)	116.4	110.3	
020-1120-C32	118.0(2)	117.5	117.5	03-C13-N6	120.5(1)	121.2	121.1	
N22-C27-N25	117.0 (2)	117.5	117.1	O3-C13-C10	122.4 (1)	122.3	122.7	
N22-C27-C28	122.5 (2)	120.8	121.8	N6-C13-C10	117.1(1)	116.4	116.3	
N25-C27-C28	120.4 (2)	121.7	121.1	C21–N16–C27	118.5 (1)	119.1	119.3	
C27 - C28 - C30	119.8 (2)	118.9	119.3	014–N20–015	117.4(1) 122.0 (1)	124.7	124.6	
$N_{26} - C_{32} - C_{30}$	110.3(2) 120.8(2)	120.5	120.5	014 = N20 = C20 015 = N20 = C26	122.9(1) 1196(1)	117.4	117.5	
N26-C32-C33	119.6 (2)	120.3	120.1	N16-C21-N17	121.7 (1)	117.1	116.8	
C30–C32–C33	119.6 (2)	119.2	119.4	N16-C21-C22	116.6 (1)	122	121.5	
N25-C33-C32	122.3 (2)	122.8	122.5	N17-C21-C22	121.7 (1)	120.9	121.7	
S1 C5 C6 C9	170.2 (2)	170.0	170.0	C21-C22-C24	119.3(1)	118.6	119	
S1-C5-C14-C12	179.3(2)	1/8.8	-179.9	$V_{22} = C_{24} = C_{26}$	118.1(2) 120.2(1)	118.0	118.0	
S1-C16-C19-O3	-173.2 (2)	-179.9	-179.9	N20-C26-C27	119.6 (1)	120.3	120.2	
C5-S1-C16-C19	178.9 (2)	179.9	-179.9	C24-C26-C27	120.2 (1)	119.4	119.6	
				N16-C27-C26	122.3(1)	122.4	122.1	
				C36–N31–C42	118.9 (1)	119.1	119.3	
				029–N35–O30	117.9 (2)	124.7	124.6	
				029 - N35 - C41 030 - N35 - C41	125.5(2) 118.8(1)	117.4	117.9	
				N31-C36-N32	121.5 (1)	117.1	116.8	
				N31-C36-C37	116.3 (1)	122	121.5	
				N32-C36-C37	122.2 (2)	120.9	121.7	
				C36-C37-C39	119.0 (2)	118.6	119	
				N35_N41_C30	118.3(2) 121.0(1)	118.0	118.0	
				N35-C41-C42	121.0(1) 118.8(2)	120.3	120.2	
				C39–C41–C42	120.2 (1)	119.4	119.6	
				N31-C42-C41	122.1 (2)	122.4	122.1	

the Becker's three-parameters exchange functional (B3) [37] in combination with the Lee-Yang-Parr correlation functional (LYP) [38]. Then vibration standard nuclear area of the arrangement was used for harmonizing vibration number computation resulting in IR and Raman frequencies. Absolutely, the resolved regular mode oscillation frequency adds thermodynamic equity through the best of analytical mechanism. By between the ends of the Gaussview program [39] with traditional values application, vibration occurrence positions were made with a large amount of accuracy. There is always some ambiguity in important internal coordination. However, the defined coordinate from the complete set match quite well with the motion experiential using the Gaussview program.

RESULTS AND DISCUSSION

Molecular geometry: The asymmetric part of compound 2A5NPPTAA, contains nonprotonated 2-amino-5-nitropyridine and phenylthioacetic acid (PTAA). In 2A5NPBBA, nonprotonated form of two 2-amino-5-nitropyridine (2A5NP) and a barbituric acid (BBA) units exist (Figs. 1 and 2).

The H–N–H bond angle of amine group is 113° for 2A5NPPTAA and 106° for 2A5NPBBA. The results show that the amine group is slightly distorted due to its participation in N–H…O intermolecular hydrogen bond. C–NH₂ [1.333 (2) Å for 2A5NPPTAA and 1.342 (2) Å for 2A5NPBBA] and

Fig. 1. Molecular structure of the 2A5NPPTAA with the numbering scheme for the atoms and 50 % probability displacement ellipsoids (a) optimized molecular geometry and atomic numbering scheme by HF (b) and B3LYP (c) levels

Fig. 2. Molecular structure of the 2A5NPBB with the numbering scheme for the atoms and 50 % probability displacement ellipsoids (a) optimized molecular geometry and atomic numbering scheme by HF (b) and B3LYP (c) levels

C–NO₂ [1.455 (3) Å for 2A5NPPTAA and 1.435 (2) Å for 2A5NPBBA] distances in the 2-amino-5-nitropyridine have been noticed. This bond length is [1.337 (4) and 1.429 (4) Å] slightly deviated from those of the pure 2-amino-5-nitropyridine [40]. The same bond length is observed shortened and lengthened in all the protonated form of 2-amino-5-nitropyridine [41]. In the present case, both bond lengths are found better due to the delocalization of π -bond (Tables 3 and 4).

TABLE-3 HYDROGEN BONDING GEOMETRY OF 2A5NPPTAA							
D-H···A (Å, °)	(D-H) (Å)	(H…A) (Å)	(D…A) (Å)	(D–H···A) (°)			
N22-H23…O2	0.88	2.04	2.910 (3)	169.6			
O3-H4…N25	0.84	1.76	2.586 (2)	168.4			

Hydrogen bonding features: The crystal packing of 2A5NPPTAA is stabilized by a combination of N–H···O and O–H···N hydrogen bonds. The pyridine-N atom and amino N atom in 2A5NP are linked with the carboxyl group in PTAA through N–H···O and O–H···N intermolecular hydrogen bonds to form the $R_2^2(8)$ ring motif (Fig. 3). Further, this ring motif are linked with another unit of 2A5NPPTAA through N–H···O inter to make $R_4^4(8)$ motifs. These ring motifs lead to the

1 ABLE-4 HYDROGEN BONDING GEOMETRY OF 2A5NPBB							
D-H…A (Å, °)	(D-H) (Å)	(H…A) (Å)	$(D \cdots A) (\mathring{A})$	(D–H…A) (°)			
N6-H7N31	0.88	1.89	2.769 (2)	175			
N6-H5N15	0.88	1.91	2.787 (2)	173			
N4-H34O2 ^{#1}	0.95	2.43	3.264 (2)	146			
N32-H33O1	0.94	2.31	3.196 (2)	157			
N17-H19O1	0.88	2.22	3.079 (2)	166			
N17-H18O29#1	0.88	2.14	2.938 (2)	150			

Equivalent positions: i. x-1/2,-y+3/2,+z+1/2

Fig. 3. Molecular aggregation formed through 2A5NPPTAA ring motifs. Hydrogen bonds are shown as dashed lines

hydrophilic layers at z = 0 and 1 which are sandwich between the hydrophobic layer at z = 1/2 (Fig. 4).

Fig 4. Packing diagram of the 2A5NPPTAA molecules viewed down the a-axis showing alternate hydrophilic and hydrophobic regions at z = 0 or 1 and z = 1/2 respectively. H bonds are drawn as dashed lines

In 2A5NPBBA, the N–H···O and N–H···N intermolecular hydrogen bonds form two $R_2^2(8)$ motifs of a 2A5NP–acid heterosynthon. This ring motif is connected with the nitro group in 2A5NP by N–H···O hydrogen bond to form a rare bifurcated ring $R_3^4(8)$ motif. These two ring motifs are further connected in barbituric (BBA) acid *via*, N–H···O hydrogen bond to form ring $R_3^3(12)$ motifs (Fig. 5). This ring motif is mainly involved by two 2A5NP molecules and a BBA. These ring motifs are aggregated to lead a sheet-like structure along the b-axis (Fig. 6). These molecular aggregations are leading parallel to the 202 and $\overline{202}$ crystallographic planes making strong force peaks for these planes on X-ray diffraction.

Fig. 5. Molecular aggregation formed through 2A5NPBB ring motifs. Hydrogen bonds are shown as dashed lines

Fig 6. Packing diagram of 2A5NPBB molecules viewed down the b-axis. H bonds are drawn as dashed lines

Mulliken atomic charge analysis: Generally, Mulliken atomic charge result has an important application of quantum chemical calculations to molecular systems. It plays a vital role in the packing of crystals in the solid state by way of intermolecular interaction and it has significant influence on dipole moment, polarizability, electronic structure and vibrational modes [28]. The Mulliken charge analysis of molecules 2A5NPPTAA and 2A5NPBB are calculated at the HF and DFT/B3LYP levels for the molecule under study which

are given in Table-5 and the corresponding population analysis graph are shown in Figs. 7 and 8. The charge circulation of 2A5NP shows that the two carbon atoms attached with hydrogen atoms are negative. All the five carbon atoms in 2A5NP, one of the carbon (C32 for 2A5NPPTAA and C26 and C41 for 2A5NPBB) atoms has more electro negativity than the others; it is due to the carbon atom attached to nitro $(-NO_2)$ group. This characteristic nature of carbon atom is to increase the C-NO₂ bond distance owing to the electronegative repulsion between these two atoms (carbon and nitrogen). All the hydrogen atoms of 2A5NPPTAA are of positive nature. Moreover, it was identified that the H4 [0.678 e for HF and 0.752 e for DFT] and H23 [0.459 e for HF and 0.391 e for DFT] atoms have higher positive charges than the other hydrogen atoms. Because, these two hydrogen atoms are located between or aside the electronegative atoms (nitrogen and oxygen). Further, these two hydrogen atoms are singing vital role in the formation of the intermolecular network in crystalline state. In 2A5NPBB, the hydrogen H5 and H7 [0.677 e for HF and 0.691 *e* for DFT] and H19 and H33 [0.475 e for HF and 0.423 *e* for DFT] atoms have higher positive charges than the other hydrogen atoms. This revel the intermolecular charge transmit between the ions and hence the possibility of

hydrogen bonding connection and crystal packing. Particularly, the intermolecular charge transfer occurs in the two N-H···O and two N-H···N intermolecular hydrogen bonds.

Vibrational analysis: The vibrational spectroscopy can give important information about the hydrogen bonding forces and strength of intermolecular bonds in addition to regularity of the individual species. The effect of hydrogen bond is very important in crystal environment. The strong, normal and weak hydrogen bonds cause downshifting of stretching mode vibrations and up shifting of deformation mode vibrations with different wave numbers depending upon their strength. Normally, the vibrational shifts of the stretching modes are greater than the bend modes. This indicates that the linear bend is much greater than that of the angular distortion.

The molecular structure of 2A5NPPTAA and 2A5NPBB have various functional groups such as $-NH_2$, $-NO_2$, -NH, -CH, -C-N, -C-C-, -C=O, disubstituted benzene ring, *etc*. The vibrational bands of these groups are predictable to change in their intensity and position due to their environments [42]. Whole vibrational analyses of the 96 fundamental modes of 2A5NPPTAA and 123 original modes of 2A5NPBB are attempted and predicted by the quantum chemical computation and compare with their experimental vibrational spectra. The intended

Fig. 7. Atomic charges of the optimized molecular structures for 2A5NPPTAA by (a) HF/6-311++G(d,p) and (b) DFT/6-311++G(d,p) levels

Fig. 8. Atomic charges of the optimized molecular structures for 2A5NPBB by (a) HF/6-311++G(d,p) and (b) DFT/6-311++G(d,p) levels

TABLE-5 MULLIKEN ATOMIC CHARGE FOR OPTIMIZED CALCULATIONS 2A5NPPTAA 2A5NPBB B3LYP/6-B3LYP/6-HF/6-HF/6-311++G 311++G Atom 311++G 311++G Atom (d,p) (d,p) (d,p) (d,p) **S**1 0.043 -0.828 01 -0.459 -0.378 -0.325-0.242O2 -0.334-0.251 O^2 O3 -0.326-0.246 O3 -0.334-0.251H4 0.678 0.752 N4 -0.685 -0.472C5 1.045 1.109 H5 0.677 0.691 C6 -0.41 0.389 N6 -0.686 -0.472 H7 0.225 0.152 H7 0.677 0.691 C8 -0.268 -0.564 C8 0.549 0.147 H9 0.214 0.185 C9 0.448 0.23 C10 -0.475 -0.341 C10 -0.855 -0.663 H11 0.184 0.155 H11 0.276 0.258 C12 -0.268 -0.137 H12 0.28 0.258 0.214 0.448 H13 0.167 C13 0.23 C14 -0.41-0.772 014 -0.064 -0.005 H15 0.225 0.178 015 -0.055 -0.011 C16 -0.627 -0.14N16 -0.217 -0.083 H17 0.253 0.227 N17 -0.607 -0.412 H18 0.253 0.226 H18 0.31 0.277 C19 -0.161 -0.171 H19 0.475 0.423 O20 -0.082 -0.03 N20 -0.181 -0.24 O21 -0.067 -0.019 C21 0.111 -0.168 N22 -0.631 -0.419 C22 -0.177 -0.073 H23 0.459 0.391 H23 0.216 0.175 H24 0.31 0.281 C24 0.008 0.078 N25 -0.342-0.222 H25 0.296 0.253 N26 -0.136 -0.183C26 -0.357 -0.352 C27 0.2 -0.201C27 -0.075 -0.15 -0.132 0.096 0.279 C28 H28 0.317 H29 0.223 0.191 O29 -0.063 -0.005 C30 0.081 0.241 O30 -0.055 -0.011 0.295 H31 0.265 N31 -0.217 -0.083 C32 -0.509 -0.636 N32 -0.608 -0.412 C33 -0.012-0.1 H33 0.475 0.423 H34 0.281 0.243 H34 0.31 0.277 N35 -0.181-0.24 C36 0.111 -0.168 C37 -0.177 -0.073 H38 0.216 0.175 C39 0.008 0.078 H40 0.296 0.253 C41 -0.357 -0.352 C42 -0.076 -0.15 H43 0.317 0.279

vibrational wave numbers, measured FT-IR and FT-Raman band positions with their matching assignments for the molecules 2A5NPPTAA and 2A5NPBB are given in Tables 6 and 7, respectively. The FT-IR and FT-Raman spectra of the compounds are shown in Figs. 9 and 10, respectively which are compared with their theoretical counterparts.

Vibrations of the -NH₂: The N–H stretching vibrations from the primary amines occur in the region $3600-3300 \text{ cm}^{-1}$ [43,44]. In the present case, the 2-amino-5-nitropyridine has less intense peak calculated at 3941/3694 and 3951/3703 cm⁻¹ in HF/B3LYP levels for 2A5NPPTAA and 2A5NPBB, respectively to assign the NH₂ asymmetric stretching modes. This stretching vibration appears as a medium band at 3738 cm⁻¹ in

Asian J. Chem.

Fig. 9. Comparative representations of FT-IR spectra for 2A5NPPTAA

	Observational	HE/6 31	$1 \pm G(d p)$	B3L VP/6 3	$G(cm^2)$ OF 2A5NP	
Mode No.	FT-IR	V	*I ^{IR}	<u>D5L1170-5</u>	*I ^{IR}	- Position
1	11 IK	13	0 195	13	0.396	v C_H
2		16	2.647	18	2.227	v C–H
3		30	2.975	29	0	γ C-H
4		33	0.041	33	2.612	Lattice vibration
5		48	1.392	49	0.005	Lattice vibration
6		59	0.384	51	0.564	ρCH_2
7		66	2.418	70	4.288	ω CH ₂
8		75	5.331	76	6.13	ρCH_2
9		78	2.517	99	2.141	βС–Н
10		99	0.015	104	0.142	ρCH_2
11		120	3.232	112	1.799	ρCH_2
12		133	2.405	158	15.149	βС–Н
13		225	17.072	183	0.342	ү С–Н
14		254	1.855	232	3.919	$\rho NO_2 + \omega CH_2$
15		258	0.329	242	8.585	ρNO_2
16		286	0.699	264	0	γC-H
17		311	0.501	295	14.757	рС-н исльеси
10		349	1 1 4 0	309	0.993	v C - N + p C - H
19		399 426	0.206	570 412	116.129	γN=0 vC H
20		455	0.014	412	0.996	$\gamma C = \Pi$
21		463	0.005	428	0.252	р НО ₂ + 6 СП ₂ у С–Н
23		464	27.66	440	31,386	0 NO ₂
24		479	0.722	463	31.938	0 NO ₂
25		532	32.255	478	7.921	γ C-H
26		547	12.837	498	27.243	үС–Н
27	528 w	587	20.338	543	15.641	ρNO_2
28		618	0.61	583	0.036	ρ CH ₂
29		673	0.013	631	0.58	Planar ring distortion
30		702	13.371	656	17.444	ν C–C + β C–H
31		703	36.156	668	13.105	$\omega CH_2 + \beta O-H$
32		713	66.151	676	14.645	ωCH_2
33		722	15.32	700	17.727	үС–Н
34		763	14.117	707	24.899	үС–С
35		768	36.275	717	33.31	γ (C–H + N–H)
36	728 w	813	7.781	737	7.509	үС–Н
37		826	21.063	742	68.06	γC-H
38 20		834	30.535	/3/	27.563	t INH ₂
39 40		888 010	22.030	811 827	2.97	
40		910	30.038 4.461	830	10.037	всн
41		920	9.617	848	10.912	δΝΟ
43		952	117.902	882	33.33	Ring breathing
44		967	35.498	895	0.746	v C–H
45		989	9.627	915	8.674	ρCH_2
46		1004	21.495	921	19.397	$\omega CH_2 + \nu C - C$
47		1045	3.003	975	13.025	γC–H
48		1082	1.454	975	0.417	үС–Н
49		1099	1.991	996	0.03	үС–Н
50		1104	0.001	996	0.045	үС–Н
51		1105	9.527	1011	0.251	Planar ring distortion
52		1112	7.419	1031	19.873	β C–H
53		1117	0.029	1036	80.431	үС-Н
54		1118	0.01	1046	19.319	βС–Н
55		1153	14.507	10/4	13.354	ρ NH ₂
50		1162	1.076	1101	38.357	рС-н рс и
59		1194	4.184	1105	9.98	рС-н вс н
50		1228	1.42	1141	0 173	рС-п t СН
60		1228	34.42	1180	8 79	βC-H
61		1285	1.68	1183	0.4	рсп вс–н
62		1291	2.459	1209	26.31	β C–H

TABLE-6

63	1278 w	1313	0.992	1221	248.781	ωCH_2	
64		1325	341.505	1313	20.799	ν C–C + β C–H	
65		1345	23.033	1324	191.095	βС–Н	
66	1345 m	1443	74.764	1342	34.62	$\omega CH_2 + \rho NH_2$	
67		1444	2.215	1348	311.704	$\omega CH_2 + \beta C-H$	
68		1470	41.319	1358	40.116	βС–Н	
69		1478	54.913	1363	516.01	β N–H + ρ NH ₂	
70		1550	429.207	1375	0.981	βС–Н	
71	1418 w	1571	252.285	1452	23.555	δCH_2	
72		1583	10.034	1457	154.816	δCH_2	
73		1597	242.055	1469	4.213	βС–Н	
74	1504 w	1600	381.392	1508	20.046	β Ο–Η	
75		1633	20.02	1511	37.301	βС–Н	
76		1658	23.792	1535	48.71	β C–H + δ NH ₂	
77		1725	27.607	1560	105.371	ν N–O + β C–H	
78	1632 s	1754	0.691	1611	2.633	ν C–C + β C–H	
79		1770	3.997	1614	125.681	ν C–C + β C–H	
80		1780	264.213	1627	60.139	ν C–C	
81		1815	675.396	1650	308.22	$\delta NH_2 + \nu C = C$	
82		1822	371.372	1687	317.518	δNH_2	
83		1957	433.159	1754	279.271	ν C=O	
84	2352 w	3219	12.506	2904	3319.705	ν O–H…N	
85		3266	1.315	3049	5.882	$v_{s} CH_{2}$	
86		3320	0.269	3094	0.486	$v_{as} CH_2$	
87		3330	5.004	3161	3.216	v CH (phenyl)	
88		3342	15.41	3168	1.427	v CH (phenyl)	
89		3349	18.725	3178	15.136	v CH (phenyl)	
90		3353	3.623	3187	3.63	v CH	
91		3355	10.183	3191	21.381	v CH (phenyl)	
92		3377	0.948	3199	0.739	v CH	
93		3389	2.322	3203	6.495	v CH (phenyl)	
94	3211 w	3726	383.427	3219	3.587	v CH	
95		3753	2007.893	3375	1531.928	$v_{s} NH_{2}$	
96		3941	161.517	3694	115.149	$v_{as} NH_2$	

*Calculated infrared intensity.

TABLE-7						
	Observational	HF/6-31	1++G(d,p)	B3LYP/6-3	$\frac{11}{11++G(d,p)}$	
Mode No.	FT-IR	v_{cal}	*I ^{IR}	V _{cal}	*I ^{IR}	- Position
1		6	2.62	3	4.212	ρCH ₂
2		13	0.004	15	0	Lattice vibration
3		20	0.002	25	0	Lattice vibration
4		21	1.213	26	1.392	Lattice vibration
5		30	1.357	28	5.894	$ ho CH_2$
6		34	19.459	33	7.801	ρCH_2
7		44	4.475	48	0	t NO ₂
8		49	0.706	52	6.537	ω CH ₂
9		49	0.143	54	1.782	$ ho CH_2$
10		58	1.558	55	0.893	β C–H + β N–H
11		76	0.003	77	0	γ (C–H+N–H)
12		79	8.635	83	6.6	ρCH ₂
13		87	0.59	97	0.072	ү С–Н
14		100	2.472	108	0	ωNH_2
15		111	0.737	109	5.716	ωNH_2
16		117	0.026	114	2.431	β C–H + β N–H
17		119	12.729	131	0.934	β Ν–Η
18		120	0.006	134	0	γ N–H
19		157	9.348	155	1.94	ρCH_2
20		235	0.03	233	1.433	β C–H + β N–H
21		252	0.221	234	0.011	β C–H + β N–H
22		252	0.738	261	0	γ (N-H + C-H)
23		269	193.514	264	4.149	γ (N-H + C-H)
24		291	0.01	289	0.002	γ Ν–Η
25		296	124.409	315	247.921	ү С–Н

26		399	0.639	367	0.123	β C-H + β N-H
27		300	0.101	368	0.466	BCULBNU
27		101	20.001	200	10.774	
28		424	50.891	389	18.774	р С= 0
29		441	139.184	416	139.882	β (C=O + N-H)
30		459	13.411	428	0	үС–Н
31		461	8.558	428	0.97	үС–Н
32		462	0.005	434	56.241	0 NH
33		463	0.652	136	7 74	o NH
33		403	0.032	430	7.74	ρnn_2
34		517	26.839	485	0.768	ρCH_2
35		533	0.9	496	46.397	ωCH_2
36		534	59.371	500	0	үС–Н
37		534	22.643	501	45.703	γC–H
38		543	48 906	501	67 464	W CH
30		586	3 462	541	4 048	
40		507	22.471	540	4.940	$-\rho C - \Pi + \rho N - \Pi$
40	(27	387	33.471	542	20.324	р С–н + р №–н
41	637 w	647	0.02	631	0	t CH ₂
42		655	39.478	644	7.646	Ring breathing
43		692	2.524	650	34.228	$\omega CH_2 + \beta N - H$
44		695	5,153	656	5.656	v C-C
45		699	21 609	657	3 728	Ring breathing
46		701	10.014	660	11 407	N C N
40		701	10.914	009	11.407	V C-IN
47		702	3.995	6/1	0	t NH ₂
48		719	21.793	672	0.834	β N–H
49		720	13.574	678	66.289	γ N–H
50		811	0.048	720	0	у С–Н
51		812	25 428	720	15 947	V(C-H + N-H)
52		824	0.005	740	0	VC H
52		024	0.005	749	1 401	y C-II
53		824	29.233	/49	1.481	үС–Н
54		844	16.898	761	30.266	үС–Н
55		876	0.458	836	0	γC=O
56		908	0.351	836	50.876	үС–Н
57	845 m	909	0.087	847	21,979	v С–Н
58		914	321 685	847	6 1 1 9	$\beta C - H + \beta N - H$
50		020	2 922	897	45 241	Ding broathing
39		920	5.055	002	45.541	Ring breathing
60		920	5.725	885	0.987	Ring breatning
61		968	63.073	921	5.604	ωCH_2
62		968	5.56	934	5.676	β N–H + ω CH ₂
63		1000	0.596	943	0	γ N–H
64		1003	0.575	950	55.322	0 CH
65		1062	13 598	979	101 576	VN H
66		1104	2 1 4 4	002	101.570	
00		1104	2.144	992	0	γC-H
67		1105	17.843	993	0.802	үС–Н
68		1107	4.039	1001	0	үС–Н
69		1107	0.011	1001	1.736	үС–Н
70		1124	0.881	1028	16.189	βС–Н
71		1124	0.415	1029	17.387	В С–Н
72		1150	23.23	1069	6 4 9 5	o NH
72		1150	25.25	1009	0.495	
75		1151	22.031	10/1	20.130	ρNH_2
74		1160	4.514	1083	5.992	βN–H
75	1114 w	1225	125.433	1138	160.94	βС–Н
76		1225	104.167	1139	77.545	βС–Н
77		1276	70.592	1177	18.922	βС–Н
78		1276	0.75	1177	2.142	вс–н
70		1320	2 740	1216	0	t CH
19		1320	2.749	1210	105.024	
80		1337	34.433	1240	195.234	V C-N
81		1337	1.479	1310	9.355	ωCH_2
82		1368	158.289	1323	376.15	β C–H
83		1439	197.018	1324	22.434	βС–Н
84	1334 w	1443	74.034	1342	40.883	$\beta C - H + \rho NH_{2}$
85		1443	4 474	1342	6 308	β (N-H + C-H)
86		1460	1.7/	1250	0.055	$P(\mathbf{N} + \mathbf{R} - \mathbf{H})$
00		1408	1.74	1339	0.055	V C - IV + P (IV - H + C - H)
87		1468	16.651	1360	934.17	$v C - N + \beta N - H$
88		1495	506.94	1368	480.576	$\delta CH_2 + \beta N - H$
89		1542	0.396	1370	27.359	β C–H + β N–H
90		1551	889.712	1370	164.083	β C–H + β N–H
91		1554	87.423	1423	6.176	δCH
92		1587	324 196	1450	322 456	$\beta C_H + \beta N_H$
14		1507	547.190	1450	522.450	peniphin

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	93		1600	905.39	1452	1.187	β C–H + β N–H	
95164317.821152096.9 β C-H + β N-H9616491.912152221.844 β C-H97165511.948152293.99 β N-H98166352.068155825.79 β N-H99173034.7271562188.987 ν N-O100173022.784156216.317 β C-H + β N-H1011777213.3861615192.588 ν C-C + β C-H1021632 w1811124.013164543.665 δ NH, + β C-H1031632 w1811124.0131646485.357 δ NH, + β C-H1041817782.0791646485.357 δ NH, + β C-H10518171101.8641676492.488 δ NH, + β C-H106182445.3081690167.515 δ NH, + β C-H1081979760.4021778522.387 ν C=O + β N-H1091830 w2000190.5161800238.954 ν C=O + β N-H1102650 br32201.40930203342.73 ν N-H-··N1112922 w32680.2893052901.506 ν N-H-··N11233527.66630970.881 ν_{a} CH211333527.66630970.881 ν_{a} CH211433744.01831853.191 ν CH211533745.25831855.279 ν	94	1493 w	1602	310.954	1460	211.775	v C–N	
9616491.912152221.844 β C-H97165511.948152393.99 β N-H98166352.068155825.79 β N-H99173034.7271562188.987 v N-O100173022.784156216.317 β C-H + β N-H1011777213.3861615192.588 v C-C + β C-H1021778176.43316175.401 v C-C + β C-H1031632 w1811124.013164543.665 δ NH ₂ + β C-H1041817782.079164485.357 δ NH ₂ + β C-H1051817110.8641676492.488 δ NH ₂ 106182445.3081690167.515 δ NH ₂ 1071709 w19261036.4671745543.507 v C=O + β N-H1081979760.4021778522.387 v C=O1091830 w2000190.5161800238.954 v C=O + β N-H1102650 br32201.40930203342.73 v N-H-··N1112922 w32680.2893052901.506 v N-H···N11233527.66630970.881 v_{ac} CH ₂ 11333745.25831855.279 v CH11433744.01831853.191 v CH11533745.25831915.998 v CH116	95		1643	17.821	1520	96.9	β C–H + β N–H	
97165511.948152393.99 β N-H98166352.068155825.79 β N-H99173034.7271562188.987v N-O100173022.784156216.317 β C-H + β N-H1011777213.3861615192.588v C-C + β C-H1021778176.43316175.401v C-C + β C-H1031632 w1817782.0791646485.357 δ NH ₂ + β C-H1041817782.0791646485.357 δ NH ₂ + β C-H10518171101.8641676492.488 δ NH ₃ 106182445.3081690167.515 δ NH ₂ 1071709 w19261036.4671745543.507v C=O + β N-H1081979760.4021778522.387v C=O1091830 w2000190.5161800238.954v C=O + β N-H1102650 br32201.40930203342.73v N-H-··N1112922 w32680.2893052901.506v N-H-··N11233527.66630970.881v _w CH ₂ 11333527.66630970.881v _w CH ₂ 11433745.25831855.279v CH11533892.50531915.998v CH11633892.50531915.998v CH1163389 <t< td=""><td>96</td><td></td><td>1649</td><td>1.912</td><td>1522</td><td>21.844</td><td>βС–Н</td><td></td></t<>	96		1649	1.912	1522	21.844	βС–Н	
98166352.068155825.79 β N-H99173034.7271562188.987v N-O100173022.784156216.317 β C-H + β N-H1011777213.3861615192.588v C-C + β C-H1021778176.43316175.401v C-C + β C-H1031632 w1811124.013164543.665 δ NH ₂ + β C-H1041817782.0791646485.357 δ NH ₂ + β C-H10518171101.8641676492.488 δ NH106182445.3081690167.515 δ NH1071709 w19261036.4671745543.507v C=O + β N-H1081979760.4021778522.387v C=O1091830 w2000190.5161800238.954v C=O + β N-H1102650 br32201.40930203342.73v N-H…N1112922 w32680.2893052901.506v N-H…N11233527.66630970.881v _a CH211333527.66630970.881v _a CH211433744.01831853.191v CH11533745.25831855.279v CH11633892.50531915.998v CH11733892.183319113.059v CH1183217 w3566	97		1655	11.948	1523	93.99	β Ν–Η	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	98		1663	52.068	1558	25.79	β Ν–Η	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	99		1730	34.727	1562	188.987	ν N–Ο	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100		1730	22.784	1562	16.317	β C–H + β N–H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	101		1777	213.386	1615	192.588	ν C–C + β C–H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	102		1778	176.433	1617	5.401	ν C–C + β C–H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	103	1632 w	1811	124.013	1645	43.665	$\delta NH_2 + \beta C - H$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	104		1817	782.079	1646	485.357	$\delta NH_2 + \beta C - H$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	105		1817	1101.864	1676	492.488	δNH_2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	106		1824	45.308	1690	167.515	δNH_2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	107	1709 w	1926	1036.467	1745	543.507	ν C=O + β N–H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108		1979	760.402	1778	522.387	ν C=O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109	1830 w	2000	190.516	1800	238.954	ν C=O + β N–H	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	2650 br	3220	1.409	3020	3342.73	ν N–H…N	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	2922 w	3268	0.289	3052	901.506	ν N–H…N	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112		3352	0.901	3066	0.13	$v_{s} CH_{2}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113		3352	7.666	3097	0.881	$v_{as} CH_2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114		3374	4.018	3185	3.191	v CH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115		3374	5.258	3185	5.279	v CH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	116		3389	2.505	3191	5.998	v CH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	117		3389	2.183	3191	13.059	v CH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	118	3217 w	3566	1620.183	3219	0.969	v CH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	119		3582	526.333	3219	5.802	v CH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120		3774	919.394	3446	1723.593	$v_{s}NH_{2}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	121	3478 w	3781	21.787	3462	132.318	$v_{s}NH_{2}$	
123 3738 m 3951 228.749 3703 210.021 v _{as} NH ₂	122		3949	52.795	3702	16.205	$\nu_{as} NH_2$	
	123	3738 m	3951	228.749	3703	210.021	$v_{as}NH_2$	

*Calculated infrared intensity.

IR spectrum for 2A5NPBB. The NH₂ symmetric stretching vibration occurs at 3478 cm⁻¹ in IR spectrum for 2A5NPBB. It is not present in 2A5NPPTAA molecule. The above stretching vibration is predicted at 3753/3375 cm⁻¹ in HF/B3LYP levels for 2A5NPPTAA and 3781/3462 cm⁻¹ in HF/B3LYP levels for 2A5NPBB. The N-H…O hydrogen bond trace is appear as a broad band around 2900-2700 cm⁻¹ for 2A5NPPTAA molecule. The corresponding vibrations were calculated at 3219 and 2904 cm⁻¹ in HF and B3LYP methods respectively. These calculated stretching vibrations occur as very strong peaks in theoretical methods. In 2A5NPBB, the broad band is appears in the range of 2990–2400 cm⁻¹ due to the N-H…N hydrogen bond. The above vibration is predicted as a strong peak at 3220/3020 and 3268/3052 cm⁻¹ in HF/ B3LYP methods. The occurrence of sharp and broad bands of the spectrum for both molecules in the theoretical and experimental methods is due to the fact that the theoretical computation are carried out in isolated gas state while the crystalline state dominate with the great hydrogen bonding interactions.

The sharp vibration of the amine group appears at 1630– 1610 cm⁻¹. In 2A5NPPTAA molecule, the NH₂ scissoring vibration was found to be 1687 and 1650 cm⁻¹ in B3LYP method. This scissoring vibration is observed at 1632 cm⁻¹ for 2A5NPBB. The corresponding wave number is predicted at 1645 cm⁻¹ in B3LYP method. In both molecules, the HF level is more deviated from the DFT level. In lower wave numbers region, most of the bands appears as scissoring, rocking and wag movement vibrations. It is in excellent quality agreement with the investigational results.

C-H, C-N, C-C and C=O vibrations: The C-H stretching vibrations of aromatic compounds are observed in the region 3100–3000 cm⁻¹ [45]. In the present case, the C–H stretching vibration appears at 3211 and 3217 cm⁻¹ in the IR spectra of 2A5NPPTAA and 2A5NPBB, respectively. The corresponding vibration is well correlated with B3LYP level and slightly deviated from the HF level. The C-H in-plane bending vibration appears as a weak band at 1504 cm⁻¹ for 2A5NPPTAA. It is well correlated with the theoretical results. This band is not observed in 2A5NPBB. The C-N stretching vibration is very difficult to be identified, because the mixing of several bands is possible in this wave number region [46,47]. In the present case, the C-N stretching vibration occurs at 1493 cm⁻¹ for 2A5NPBB. This vibration is calculated at 1602 and 1460 cm⁻ ¹ in HF and B3LYP methods, respectively. This vibration is not identified in 2A5NPPTAA molecule.

The substitute benzene ring has six C–C stretching vibrations. These vibrations mainly involve 'quadrant stretching' of the phenyl C-C bonds. But there is a little interface with C-H in-plane bending vibration. Two quadrant-stretching components in substituted benzenes are probable to appear in the regions 1620–1585 and 1590–1565 cm⁻¹, respectively. The 1600 cm⁻¹ doublet region is not frequency accessible to change the nature of the substitution such as *ortho*, *meta* and *para*. For these types of substitutions, the quadrant stretching vibrations are infrared still because all atoms from the ring are moving to the opposite directions. The C–C stretching vibration mixed with C–H in-plane bending modes is observed in the modes of 78 and 79 for 2A5NPPTAA molecule. This vibration is not observed in 2A5NPBB molecule. The C=O stretching vibration is observed at 1830 and 1709 cm⁻¹ for 2A5NPBB molecule. This vibration is slightly deviate from the calculate results due to the overlapping of N-H in-plane bending vibration. The vibration band is not active in 2A5NPPTAA molecule.

Conclusion

Two co-crystals of 2-amino-5-nitropyridine with phenylthioacetic acid and barbituric acid be grown-up by slow evaporation methods under room temperature. The crystal packing features indicate three dimensional hydrogen bonding network created by the classical N-H-O and N-H-S for 2-amino-5nitropyridine : phenylthioacetic acid (2A5NPPTAA) and N-H…O and N-H…N for 2-amino-5-nitropyridine:barbituric acid (2A5NPBBA) hydrogen bonds. The N-H--O and N-H--N intermolecular hydrogen bonds are leading to the two $R_2^2(8)$ and $R_4^2(8)$ ring motifs of 2A5NPPTAA. These two ring motifs lead the hydrophilic layers at z = 0 and 1 which are sandwich between the hydrophobic layer at 1/2. The N-H-O and N-H…N intermolecular hydrogen bonds formed a heterosynthon of two $R_2^2(8)$ motifs. It is further linked with the acid through N–H···O hydrogen bond to form ring $R_3^3(12)$ motifs. This molecular accretion are leading parallel to the 202 and 202 crystallographic planes making strong intensity peaks for these planes at X-ray diffraction. The shifting of vibration bands due to N-H-O and N-H-N intermolecular hydrogen bonds are analyzed. The optimized molecular structure, molecular properties and vibrational frequencies were estimated by quantum chemical calculations with HF and DFT/B3LYP methods invoking 6-311++G(d,p) basis sets. The optimized molecular geometry and calculate vibrational spectra are compared with experimental results which explain significant agreement.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- G.R. Desiraju, CrystEngComm, 5, 466 (2003); 1. https://doi.org/10.1039/b313552g.
- 2. C.C. Sun and H. Hou, Cryst. Growth Des., 8, 1575 (2008); https://doi.org/10.1021/cg700843s.
- 3 A.V. Trask, W.D.S. Motherwell and W. Jones, Cryst. Growth Des., 5, 1013 (2005);
- https://doi.org/10.1021/cg0496540.
- 4. A.N. Sokolov, T.L. Friscic and R. MacGillivray, J. Am. Chem. Soc., 128, 2806 (2006); https://doi.org/10.1021/ja057939a.
- M.L. Cheney, G.J. McManus, J.A. Perman, Z. Wang and M.J. Zaworotko, 5. Cryst. Growth Des., 7, 616 (2007); https://doi.org/10.1021/cg0701729
- N.A. Caballero, F.J. Meléndez, A. Niño and C. Muñoz-Caro, J. Mol. Model., 6. 13, 579 (2007);
 - https://doi.org/10.1007/s00894-007-0184-9.
- 7. N. Stanley, P.T. Muthiah, S.J. Geib, P. Luger, M. Messerschmidt and M. Weber, Tetrahedron, 61, 7201 (2005); https://doi.org/10.1016/j.tet.2005.05.033.
- D.E. Lynch and G.D. Jones, Acta Crystallogr. B, 60, 748 (2004); 8. https://doi.org/10.1107/S0108768104023791.
- 9. H. Koshima, M. Hamada, I. Yagi and K. Uosaki, Cryst. Growth Des., 1, 467 (2001); https://doi.org/10.1021/cg015542m.

- Y. Le Fur, M. Bagieu-Beucher, R. Masse, J.-F. Nicoud and J.-P. Lévy, 10. Chem. Mater., 8, 68 (1996); https://doi.org/10.1021/cm9501731.
- 11. J.T. Bojarski, J.L. Mokrosz, H.J. Barton and M.H. Paluchowska, in ed.: A.R. Katritzky, Recent Progress in Barbituric Acid Chemistry in Advances in Heterocyclic Chemistry, Academic Press, Inc., New York, vol. 38 (1985).
- G.L. Patrick, An Introduction to Medicinal Chemistry, Oxford University 12. Press, Oxford, edn 4, pp. 752, (2009).
- 13. J.T. Bojarski, J.L. Mokrosz, H.J. Bartoñ and M.H. Paluchowska, Adv. Heterocycl. Chem., 38, 229 (1985); https://doi.org/10.1016/S0065-2725(08)60921-6.
- 14. K.S. Gulliya, Uses for Barbituric Acid Analogs, US Patent 5869494A (1999).
- 15. K. Sakai, and Y. Satoh, Barbituric Acid Derivative and Preventive and Therapeutic Agent for Bone and Cartilage Containing the same, International Patent, W09950252A3 (2000).
- K. Tanaka, X. Chen, T. Kimura and F. Yoneda, Tetrahedron Lett., 28, 16. 4173 (1987);
- https://doi.org/10.1016/S0040-4039(00)95570-9.
- 17. G. Cerbai and G.F. di Paco Boll, Chim. Farm., 103, 653 (1964).
- M. Solotorovsky, Am. Rev. Tuberc., 74, 68 (1956). 18. 19. M. Aydin, N. Arsu, Y. Yagci, S. Jockusch and N.J. Turro, Macromolecules, 38, 4133 (2005);
- https://doi.org/10.1021/ma047560t. 20. F. Turtaut, S. Ouahrani-Bettache, J.-L. Montero, S. Köhler and J.-Y.
- Winum, MedChemComm, 2, 995 (2011); https://doi.org/10.1039/c1md00146a.
- 21 G. Cerbai and G.F. di Paco, Dissert. Pharm. Pharmacol., 20, 589 (1968).
- Y. Ohshiro, N. Ando, M. Komatsu and T. Agawa, Synthesis, 276 (1985); 22. https://doi.org/10.1055/s-1985-31175
- 23. M. Kennedy, M.A. McKervey, A.R. Maguire and S.J. Naughton, J. Chem. Soc. Perkin Trans. I, 1041 (1990); https://doi.org/10.1039/P19900001041.
- 24. M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Chem. Soc. Chem. Commun., 362 (1978);
- https://doi.org/10.1039/c39780000362. 25. M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Org. Chem., 45, 2945 (1980);
- https://doi.org/10.1021/jo01303a005.
- 26. F.G. Bordwell, M.D. Wolfinger and J.B. O'Dwyer, J. Org. Chem., 39, 2516 (1974);
- https://doi.org/10.1021/jo00931a011. 27. J.C. Clinet and G. Balavoine, Tetrahedron Lett., 28, 5509 (1987); https://doi.org/10.1016/S0040-4039(00)96766-2.
- 28. P. Magnus, M. Giles, R. Bonnert, C.S. Kim, L. McQuire, A. Merritt and N.J. Vicker, J. Am. Chem. Soc., 114, 4403 (1992); https://doi.org/10.1021/ja00037a058.
- 29 (a) T. Takahashi, S. Hahiguchi, K. Kasuga and J. Tsuji, J. Am. Chem. Soc., 100, 7424 (1978); https://doi.org/10.1021/ja00491a056. (b) M. Wada, T. Shigehisa and K.Y. Akiba, Tetrahedron Lett., 26, 5191 (1985)
 - https://doi.org/10.1016/S0040-4039(00)98900-7.
- S. Kumaresan, M. Indrani, R. Ramasubramanian, R. Subha, P.E. Karthik, 30. S. Athavan and F.R. Fronzcek, Int. J. Curr. Chem., 1, 163 (2010).
- 31. J.-T. Li, H.-G. Dai, D. Liu and T.-S. Li, Synth. Commun., 36, 789 (2006); https://doi.org/10.1080/00397910500451324.
- 32. Bruker APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- 33. G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
- 34. A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); https://doi.org/10.1107/S090744490804362X
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, 35 J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C.

Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT (2013).

- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); <u>https://doi.org/10.1002/jcc.540030212</u>.
- P. Hohenberg and W. Kohn, *Phys. Rev. B*, **136**, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- 39. R. Dennington, T. Keith and J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission (2009).
- F.P. Anderson, J.F. Gallagher, P.T.M. Kenny and A.J. Lough, Acta Crystallogr. Sect. E Struct. Rep. Online, 61, o1350 (2005); https://doi.org/10.1107/S1600536805010433.
- C.B. Aakeroy, A.M. Beatty, M. Nieuwenhuyzen and M. Zou, *J. Mater. Chem.*, 8, 1385 (1998); https://doi.org/10.1039/a800073e.

- I. Sidir, Y.G. Sidir, M. Kumalar and E. Tasal, J. Mol. Struct., 964, 134 (2010); https://doi.org/10.1016/j.molstruc.2009.11.023.
- 43. G. Ploug-Sørensen and E.K. Andersen, *Acta Crystallogr. C*, **39**, 112 (1983);
- https://doi.org/10.1107/S0108270183003790.
 44. M. Kurt, M. Yurdakul and S. Yurdakul, J. Mol. Struct. THEOCHEM, 711, 25 (2004); https://doi.org/10.1016/j.theochem.2004.07.034.
- 45. V. Krishnakumar and R.J. Xavier, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 253 (2005); https://doi.org/10.1016/j.saa.2004.03.038.
- 46. H. Lampert, W. Mikenda and A. Karpfen, J. Phys. Chem. A, 101, 2254 (1997);
- https://doi.org/10.1021/jp962933g.
 47. C.N. Banwell and E.M. Mccash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill, New Delhi, edn 4 (1995).