Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation of Benzyl Alcohol in Slurry Phase Over Nanoporous ZrV2O7 Catalyst and Determination of Reaction Mechanism Using DFT
Corresponding Author(s) : Shweta Kanungo Joshi
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
A process for high conversion of benzyl alcohol to benzaldehyde and benzoic acid over nanoporous ZrV2O7 is reported and mechanism is predicted by employing density functional theory (DFT). The reaction was carried out in slurry phase using air. Under optimum condition a maximum conversion of 93.89 % of benzyl alcohol was obtained. The catalyst was found to have 81.78 % selectivity for the benzoic acid. Mechanism for the reaction has been suggested from the analysis of reaction products and DFT modeling of the transition state. From the transition state modeling it is concluded that the reaction follows Mars-Van Krevelen type redox mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Sheldon and J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Academic Press: New York (1981).
- S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan and D.H.B. Ripin, Chem. Rev., 106, 2943 (2006); https://doi.org/10.1021/cr040679f.
- M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph Series, ACS: Washington, DC (1990).
- J. E. Bäckvall, Modern Oxidation Methods, John Wiley & Sons (2011).
- T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 105, 2329 (2005); https://doi.org/10.1021/cr050523v.
- F.M. Menger and C. Lee, Tetrahedron Lett., 22, 1655 (1981); https://doi.org/10.1016/S0040-4039(01)90402-2.
- J. Muzart, Chem. Rev., 92, 113 (1992); https://doi.org/10.1021/cr00009a005.
- G. Cainelli and G. Cardillo, Chromium Oxidants in Organic Chemistry, Springer: Berlin (1984).
- S.V. Ley and A. Madin, eds.: B.M. Trost and I. Fleming, Comprehensive Organic Synthesis, Pergamon Press, Oxford, UK, vol. 7, p. 291 (1991).
- T.V. Lee, eds.: B.M. Trost and I. Fleming, Comprehensive Organic Synthesis, Pergamon Press, Oxford, UK, vol. 7, p. 291 (1991).
- W.P. Griffith, Chem. Soc. Rev., 21, 179 (1992); https://doi.org/10.1039/cs9922100179.
- D.B. Dess and J.C. Martin, J. Org. Chem., 48, 4155 (1983); https://doi.org/10.1021/jo00170a070.
- M.G. Buonomenna and E. Drioli, J. Appl. Catal. B, 79, 35 (2008); https://doi.org/10.1016/j.apcatb.2007.10.003.
- V.R. Choudhary, D.K. Dumbre and S.K. Bhargava, Ind. Eng. Chem. Res., 48, 9471 (2009); https://doi.org/10.1021/ie801883d.
- G. Strukul, Catalytic Oxidations with Hydrogen Peroxide as Oxidant, Kluwer Academic Publishers: Netherlands (1992).
- Y. He, X. Ma and M. Lu, ARKIVOC, 187 (2012); https://doi.org/10.3998/ark.5550190.0013.817.
- F. Adam and O. Wan-Ting, J. Phy. Sci. (Malaysia), 24, 1 (2013).
- S. Masoudian and H. Yahyaei, Indian J. Chem., 50A, 1002 (2011).
- A. Kumar, V.P. Kumar, B.P. Kumar, V. Vishwanathan and K.V.R. Chary, Catal. Lett., 144, 1450 (2014); https://doi.org/10.1007/s10562-014-1285-6.
- A. Kumar, B. Sreedhar and K.V.R. Chary, J. Nanosci. Nanotechnol., 15, 1714 (2015); https://doi.org/10.1166/jnn.2015.9022.
- C. Srinivasan and B. Viswanathan, Indian J. Chem., 41B, 1349 (2002).
- K. Bijudas, P. Bashpa, K.P.A. Nasrin, K. Krishnapriya and R. Krishnan, J. Chem. Sci. Rev. Lett., 3, 123 (2014).
- J.S. Rebello, S.P. Naik and J.B. Fernandes, Indian J. Chem., 43B, 1676 (2004).
- V.R. Choudhary, R. Jha and P. Jana, Green Chem., 9, 267 (2007); https://doi.org/10.1039/b608304h.
- M. Ilyas and M. Sadiq, Chem. Eng. Technol., 30, 1391 (2007); https://doi.org/10.1002/ceat.200700072.
- R. Sumathi, K. Johnson, B. Viswanathan and T.K. Varadarajan, J. Appl. Catal. A, 172, 15 (1998); https://doi.org/10.1016/S0926-860X(98)00119-7.
- S.T. Aruna and A.S. Mukasyan, Curr. Opin. Solid State Mater. Sci., 12, 44 (2008); https://doi.org/10.1016/j.cossms.2008.12.002.
- K. Sivaranjani, A. Verma and C.S. Gopinath, Green Chem., 14, 461 (2012); https://doi.org/10.1039/C1GC15907K.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, V.H.T. Nakai, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, V. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT (2010).
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, edn 2 (1996).
- L. Barbossa, Ph.D. Thesis, Theoretical Studies of Nitrile Hydrolysis by Solid Acid Catalyst, Technische Universiteit, Eindhoven, Netherlands (2000).
- J.W. Ochterski, Thermochemistry in Gaussian (2000); http://www.gaussian.com/g_whitepap/thermo.htm.
- H. Fu, Z.P. Liu, Z.H. Li, W.N. Wang and K.N. Fan, J. Am. Chem. Soc., 128, 11114 (2006); https://doi.org/10.1021/ja0611745.
- N.H. Nguyen, T.H. Tran, M.T. Nguyen and M.C. Le, Int. J. Quantum Chem., 110, 2653 (2010); https://doi.org/10.1002/qua.22389.
- J.S.O. Evans, J.C. Hanson and A.W. Sleight, Acta Crystallogr., 54, 705 (1998); https://doi.org/10.1107/S0108768198000962.
- G.K. Chuah and S. Jaenicke, Appl. Catal. A, 163, 261 (1997); https://doi.org/10.1016/S0926-860X(97)00103-8.
- A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal., 177, 343 (1998); https://doi.org/10.1006/jcat.1998.2143.
- H. Mohebbi, T. Ebadzadeh and F.A. Hesari, J. Power Sources, 178, 64 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.054.
References
R.A. Sheldon and J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Academic Press: New York (1981).
S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan and D.H.B. Ripin, Chem. Rev., 106, 2943 (2006); https://doi.org/10.1021/cr040679f.
M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph Series, ACS: Washington, DC (1990).
J. E. Bäckvall, Modern Oxidation Methods, John Wiley & Sons (2011).
T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 105, 2329 (2005); https://doi.org/10.1021/cr050523v.
F.M. Menger and C. Lee, Tetrahedron Lett., 22, 1655 (1981); https://doi.org/10.1016/S0040-4039(01)90402-2.
J. Muzart, Chem. Rev., 92, 113 (1992); https://doi.org/10.1021/cr00009a005.
G. Cainelli and G. Cardillo, Chromium Oxidants in Organic Chemistry, Springer: Berlin (1984).
S.V. Ley and A. Madin, eds.: B.M. Trost and I. Fleming, Comprehensive Organic Synthesis, Pergamon Press, Oxford, UK, vol. 7, p. 291 (1991).
T.V. Lee, eds.: B.M. Trost and I. Fleming, Comprehensive Organic Synthesis, Pergamon Press, Oxford, UK, vol. 7, p. 291 (1991).
W.P. Griffith, Chem. Soc. Rev., 21, 179 (1992); https://doi.org/10.1039/cs9922100179.
D.B. Dess and J.C. Martin, J. Org. Chem., 48, 4155 (1983); https://doi.org/10.1021/jo00170a070.
M.G. Buonomenna and E. Drioli, J. Appl. Catal. B, 79, 35 (2008); https://doi.org/10.1016/j.apcatb.2007.10.003.
V.R. Choudhary, D.K. Dumbre and S.K. Bhargava, Ind. Eng. Chem. Res., 48, 9471 (2009); https://doi.org/10.1021/ie801883d.
G. Strukul, Catalytic Oxidations with Hydrogen Peroxide as Oxidant, Kluwer Academic Publishers: Netherlands (1992).
Y. He, X. Ma and M. Lu, ARKIVOC, 187 (2012); https://doi.org/10.3998/ark.5550190.0013.817.
F. Adam and O. Wan-Ting, J. Phy. Sci. (Malaysia), 24, 1 (2013).
S. Masoudian and H. Yahyaei, Indian J. Chem., 50A, 1002 (2011).
A. Kumar, V.P. Kumar, B.P. Kumar, V. Vishwanathan and K.V.R. Chary, Catal. Lett., 144, 1450 (2014); https://doi.org/10.1007/s10562-014-1285-6.
A. Kumar, B. Sreedhar and K.V.R. Chary, J. Nanosci. Nanotechnol., 15, 1714 (2015); https://doi.org/10.1166/jnn.2015.9022.
C. Srinivasan and B. Viswanathan, Indian J. Chem., 41B, 1349 (2002).
K. Bijudas, P. Bashpa, K.P.A. Nasrin, K. Krishnapriya and R. Krishnan, J. Chem. Sci. Rev. Lett., 3, 123 (2014).
J.S. Rebello, S.P. Naik and J.B. Fernandes, Indian J. Chem., 43B, 1676 (2004).
V.R. Choudhary, R. Jha and P. Jana, Green Chem., 9, 267 (2007); https://doi.org/10.1039/b608304h.
M. Ilyas and M. Sadiq, Chem. Eng. Technol., 30, 1391 (2007); https://doi.org/10.1002/ceat.200700072.
R. Sumathi, K. Johnson, B. Viswanathan and T.K. Varadarajan, J. Appl. Catal. A, 172, 15 (1998); https://doi.org/10.1016/S0926-860X(98)00119-7.
S.T. Aruna and A.S. Mukasyan, Curr. Opin. Solid State Mater. Sci., 12, 44 (2008); https://doi.org/10.1016/j.cossms.2008.12.002.
K. Sivaranjani, A. Verma and C.S. Gopinath, Green Chem., 14, 461 (2012); https://doi.org/10.1039/C1GC15907K.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, V.H.T. Nakai, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, V. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT (2010).
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, edn 2 (1996).
L. Barbossa, Ph.D. Thesis, Theoretical Studies of Nitrile Hydrolysis by Solid Acid Catalyst, Technische Universiteit, Eindhoven, Netherlands (2000).
J.W. Ochterski, Thermochemistry in Gaussian (2000); http://www.gaussian.com/g_whitepap/thermo.htm.
H. Fu, Z.P. Liu, Z.H. Li, W.N. Wang and K.N. Fan, J. Am. Chem. Soc., 128, 11114 (2006); https://doi.org/10.1021/ja0611745.
N.H. Nguyen, T.H. Tran, M.T. Nguyen and M.C. Le, Int. J. Quantum Chem., 110, 2653 (2010); https://doi.org/10.1002/qua.22389.
J.S.O. Evans, J.C. Hanson and A.W. Sleight, Acta Crystallogr., 54, 705 (1998); https://doi.org/10.1107/S0108768198000962.
G.K. Chuah and S. Jaenicke, Appl. Catal. A, 163, 261 (1997); https://doi.org/10.1016/S0926-860X(97)00103-8.
A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal., 177, 343 (1998); https://doi.org/10.1006/jcat.1998.2143.
H. Mohebbi, T. Ebadzadeh and F.A. Hesari, J. Power Sources, 178, 64 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.054.