Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
IR, EPR and Optical Absorption Studies of xCuO-(1-x)Bi2O3 Glasses
Corresponding Author(s) : Rajesh Kumar Sharma
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
Glasses with composition xCuO-(1-x)Bi2O3 have been synthesized over the range 0.6 ≤ x ≤ 0.8 mol % by sol-gel method. The IR studies show that the glassy system contains [BiO6] octahedral and [BiO3] pyramidal units. The X-band electron paramagnetic resonance and optical absorption studies were carried out to understand the nature of bonding, symmetry and local structure around Cu2+ ions in the glasses. The spin-Hamiltonian parameters have been calculated. The trends in g-values g|| > g⊥ > ge (2.0023), calculated from the observed EPR spectra show that Cu2+ ions are coordinated with six ligand atoms in a distorted octahedron elongated along z-axis and the ground state of the Cu2+ is dx2-y2 orbital (2B1g state) having D4h symmetry. The optical absorption spectra of all the glass samples show a broad band corresponding to 2B1g→2B2g transition of Cu2+ ion. By correlating the EPR and optical absorption spectral data, the molecular orbital coefficients, α2 and β12 have been evaluated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Duran, J.R. Jurado and J.M. Fernandez Navarro, J. Non-Cryst. Solids, 79, 333 (1986); https://doi.org/10.1016/0022-3093(86)90232-2.
- A. Murali and J.L. Rao, J. Phys. Condens. Matter, 11, 7921 (1999); https://doi.org/10.1088/0953-8984/11/40/316.
- R.P.S. Chakradhar, K.P. Ramesh, J.L. Rao and J. Ramakrishna, J. Phys. Condens. Matter, 15, 1469 (2003); https://doi.org/10.1088/0953-8984/15/9/311.
- M. Sayer and A. Mansingh, Phys. Rev. B, 6, 4629 (1972); https://doi.org/10.1103/PhysRevB.6.4629.
- U. Selvaraj and K.J. Rao, J. Non-Cryst. Solids, 72, 315 (1985); https://doi.org/10.1016/0022-3093(85)90187-5.
- B.B. Das and R. Ambika, Chem. Phys. Lett., 370, 670 (2003); https://doi.org/10.1016/S0009-2614(03)00077-0.
- D.L. Griscom and R.E. Griscom, J. Chem. Phys., 47, 2711 (1967); https://doi.org/10.1063/1.1712288.
- I. Ardelean, M. Peteanu, R. Ciceo-Lucacel and I. Bratu, J. Mater. Sci.: Mater. Electr., 11, 11 (2000); https://doi.org/10.1023/A:1008943901463.
- S. Bale, M. Purnima, C.H. Srinivasu and S. Rahman, J. Alloys Compd., 457, 545 (2008); https://doi.org/10.1016/j.jallcom.2007.03.100.
- V.A. Kolesova, Fiz. Khim. Stekla, 12, 4 (1986).
- A. Bishay and C. Maghrabi, Phys. Chem. Glasses, 10, 1 (1969).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, p. 118 (1986).
- S. Hazra, S. Mandal and A. Ghosh, J. Chem. Phys., 104, 10041 (1996); https://doi.org/10.1063/1.471748.
- B. Bleaney, K.D. Bowers and D.J.E. Ingram, Proc. Royal Soc. Lond. A Math. Phys. Sci., 228, 147 (1955); https://doi.org/10.1098/rspa.1955.0039.
- I. Ardelean, M. Peteanu, R. Ciceo-Lucacel and I. Bratu, J. Mater. Sci. Mater. Electron., 11, 11 (2000); https://doi.org/10.1023/A:1008943901463.
- T. Taoufik, M. Haddad, A. Nadiri, R. Brochu and R. Berger, J. Phys. Chem. Solids, 60, 701 (1999); https://doi.org/10.1016/S0022-3697(98)00067-5.
- I. Siegel and J.A. Lorenc, J. Chem. Phys., 45, 2315 (1966); https://doi.org/10.1063/1.1727927.
- A.A. Ahmed, A.F. Abbas and F.A. Moustafa, Phys. Chem. Glasses, 24, 43 (1983).
- C.K. Jorgensen, L.H. Smith, G. Hanshoff and H. Prydz, Acta Chem. Scand., 9, 1362 (1955); https://doi.org/10.3891/acta.chem.scand.09-1362.
- A.H. Dietzel, Phys. Chem. Glasses, 24, 172 (1983);
- B.V. Raghavaiah, C. Laxmikanth and N. Veeraiah, Opt. Commun., 235, 341 (2004); https://doi.org/10.1016/j.optcom.2004.02.082.
- G. van Veen, J. Magn. Reson., 30, 91 (1969); https://doi.org/10.1016/0022-2364(78)90228-7.
- H.G. Hetch and T.S. Johnston, J. Chem. Phys., 46, 23 (1967); https://doi.org/10.1063/1.1840378.
- V. Kamalaker, G. Upender, M. Prasad and V. Chandra Mouli, Indian J. Pure Appl. Phys., 48, 709 (2010).
- H.A. Kuska, M.T. Rogers and R.E. Drullinger, J. Phys. Chem., 71, 109 (1967); https://doi.org/10.1021/j100860a015.
- D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
- F.M. Mabbs and D.J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall: London, p. 154 (1973).
- A. Yadav, V.P. Seth and P. Chand, J. Mater. Sci. Lett., 6, 468 (1987); https://doi.org/10.1007/BF01756801.
References
A. Duran, J.R. Jurado and J.M. Fernandez Navarro, J. Non-Cryst. Solids, 79, 333 (1986); https://doi.org/10.1016/0022-3093(86)90232-2.
A. Murali and J.L. Rao, J. Phys. Condens. Matter, 11, 7921 (1999); https://doi.org/10.1088/0953-8984/11/40/316.
R.P.S. Chakradhar, K.P. Ramesh, J.L. Rao and J. Ramakrishna, J. Phys. Condens. Matter, 15, 1469 (2003); https://doi.org/10.1088/0953-8984/15/9/311.
M. Sayer and A. Mansingh, Phys. Rev. B, 6, 4629 (1972); https://doi.org/10.1103/PhysRevB.6.4629.
U. Selvaraj and K.J. Rao, J. Non-Cryst. Solids, 72, 315 (1985); https://doi.org/10.1016/0022-3093(85)90187-5.
B.B. Das and R. Ambika, Chem. Phys. Lett., 370, 670 (2003); https://doi.org/10.1016/S0009-2614(03)00077-0.
D.L. Griscom and R.E. Griscom, J. Chem. Phys., 47, 2711 (1967); https://doi.org/10.1063/1.1712288.
I. Ardelean, M. Peteanu, R. Ciceo-Lucacel and I. Bratu, J. Mater. Sci.: Mater. Electr., 11, 11 (2000); https://doi.org/10.1023/A:1008943901463.
S. Bale, M. Purnima, C.H. Srinivasu and S. Rahman, J. Alloys Compd., 457, 545 (2008); https://doi.org/10.1016/j.jallcom.2007.03.100.
V.A. Kolesova, Fiz. Khim. Stekla, 12, 4 (1986).
A. Bishay and C. Maghrabi, Phys. Chem. Glasses, 10, 1 (1969).
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, p. 118 (1986).
S. Hazra, S. Mandal and A. Ghosh, J. Chem. Phys., 104, 10041 (1996); https://doi.org/10.1063/1.471748.
B. Bleaney, K.D. Bowers and D.J.E. Ingram, Proc. Royal Soc. Lond. A Math. Phys. Sci., 228, 147 (1955); https://doi.org/10.1098/rspa.1955.0039.
I. Ardelean, M. Peteanu, R. Ciceo-Lucacel and I. Bratu, J. Mater. Sci. Mater. Electron., 11, 11 (2000); https://doi.org/10.1023/A:1008943901463.
T. Taoufik, M. Haddad, A. Nadiri, R. Brochu and R. Berger, J. Phys. Chem. Solids, 60, 701 (1999); https://doi.org/10.1016/S0022-3697(98)00067-5.
I. Siegel and J.A. Lorenc, J. Chem. Phys., 45, 2315 (1966); https://doi.org/10.1063/1.1727927.
A.A. Ahmed, A.F. Abbas and F.A. Moustafa, Phys. Chem. Glasses, 24, 43 (1983).
C.K. Jorgensen, L.H. Smith, G. Hanshoff and H. Prydz, Acta Chem. Scand., 9, 1362 (1955); https://doi.org/10.3891/acta.chem.scand.09-1362.
A.H. Dietzel, Phys. Chem. Glasses, 24, 172 (1983);
B.V. Raghavaiah, C. Laxmikanth and N. Veeraiah, Opt. Commun., 235, 341 (2004); https://doi.org/10.1016/j.optcom.2004.02.082.
G. van Veen, J. Magn. Reson., 30, 91 (1969); https://doi.org/10.1016/0022-2364(78)90228-7.
H.G. Hetch and T.S. Johnston, J. Chem. Phys., 46, 23 (1967); https://doi.org/10.1063/1.1840378.
V. Kamalaker, G. Upender, M. Prasad and V. Chandra Mouli, Indian J. Pure Appl. Phys., 48, 709 (2010).
H.A. Kuska, M.T. Rogers and R.E. Drullinger, J. Phys. Chem., 71, 109 (1967); https://doi.org/10.1021/j100860a015.
D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
F.M. Mabbs and D.J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall: London, p. 154 (1973).
A. Yadav, V.P. Seth and P. Chand, J. Mater. Sci. Lett., 6, 468 (1987); https://doi.org/10.1007/BF01756801.