

IR, EPR and Optical Absorption Studies of xCuO-(1-x)Bi₂O₃ Glasses

RAJESH KUMAR SHARMA* and V. ILAMATHI

Department of Chemistry, Kanchi Mamunivar Centre for Postgraduate Studies, Pondicherry-605 008, India

*Corresponding author: E-mail: rksepr@gmail.com

Received: 6 October 2017;

Accepted: 29 January 2018;

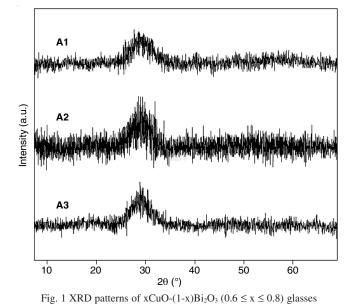
Published online: 28 February 2018;

AJC-18797

Glasses with composition xCuO-(1-x)Bi₂O₃ have been synthesized over the range $0.6 \le x \le 0.8$ mol % by sol-gel method. The IR studies show that the glassy system contains [BiO₆] octahedral and [BiO₃] pyramidal units. The X-band electron paramagnetic resonance and optical absorption studies were carried out to understand the nature of bonding, symmetry and local structure around Cu²⁺ ions in the glasses. The spin-Hamiltonian parameters have been calculated. The trends in g-values $g_{\parallel} > g_{\perp} > g_e$ (2.0023), calculated from the observed EPR spectra show that Cu²⁺ ions are coordinated with six ligand atoms in a distorted octahedron elongated along z-axis and the ground state of the Cu²⁺ is d_{x^2,y^2} orbital (²B_{1g} state) having D_{4h} symmetry. The optical absorption spectra of all the glass samples show a broad band corresponding to ²B_{1g} \rightarrow ²B_{2g} transition of Cu²⁺ ion. By correlating the EPR and optical absorption spectral data, the molecular orbital coefficients, α^2 and β_1^2 have been evaluated.

Keywords: Glasses, IR, Electron paramagnetic resonance, Bonding parameters, Optical absorption.

INTRODUCTION


CuO-containing glasses draw special attention because of their different electrical conductivity [1] and structureproperty behaviour [2,3] compared to the glasses containing $V_2O_5[4]$ and $MoO_3[5]$. In the case of CuO, during the reduction process by citric acid for gel formation [6], Cu^+ (3 d^{10}) ions are formed. The Cu^{2+} (3d⁹) ion is an interesting paramagnetic site to study the nature of bonding and site symmetry [7] by electron paramagnetic resonance (EPR) spectroscopy. Electron paramagnetic resonance investigations of Cu²⁺ ions in glasses are interesting and have received a considerable attention due to the sensitivity of parameters to local symmetry and have been studied in wide variety of glasses [8]. Furthermore, in the case of Bi₂O₃-containing glasses, the structural complications involving the different units in the network, makes it interesting to study the structural-property relations in such systems. Unconventional glasses containing Bi₂O₃ as glass former are of great interest because of their potential applications in industry and many allied areas [9]. By correlating the electron paramagnetic resonance and optical absorption spectra, we obtain information regarding the bond parameters that determine the metal-ligand bond nature in the glasses. In this paper we study the changes in IR, electron paramagnetic resonance and optical absorption parameters as a result of the variation in glass composition.

EXPERIMENTAL

In the present study, three glass samples of compositions xCuO-(1-x)Bi₂O₃ ($0.6 \le x \le 0.8$) were prepared by sol-gel method via nitrate-citrate gel route using reagent grade chemicals [Bi(NO₃)₃], [Cu(NO₃)₂] and citric acid. Three samples were labeled as A1, A2 and A3. Calculated amounts of [Cu(NO₃)₂] and [Bi(NO₃)₃] were dissolved in dil. HNO3 to prepare 0.05 M solutions. These solutions were then mixed with 2 M citric acid solution to prepare the sol. The resulting sol was air dried by heating at about 60 °C to prepare the gel which was then decomposed at ~ 120 °C. Finally, the samples were prepared by melting them in alumina crucibles in the range 1073-1133 K. The melt was air quenched by pressing between two ice cold aluminum plates to prepare the glass. The glass formation was confirmed by powder X-ray diffraction recorded with a Phillips type PW 1050 diffractometer using CuK_{α} radiation. The IR spectra of the samples at room temperature were recorded in the range 4000-400 cm⁻¹ by a Shimadzu FTIR-8700 spectrometer using KBr pellet technique The EPR spectra were recorded on an EPR spectrometer (JEOL-FE-1X) operating in the X-band frequency (H \approx 9.200 GHz) with a field modulation frequency of 100 kHz. A powdered glass sample of 100 mg was placed in a quartz tube for EPR measurements. The optical absorption spectra of the glasses were recorded using a UV-visible spectrophotometer in the wavelength region 500-900 nm.

RESULTS AND DISCUSSION

The X-ray diffraction (XRD) spectra of glass samples are shown in Fig. 1. A broad peak around 30° in 20 vanishing at higher diffraction angles is characteristic of a glass. The absence of sharp peaks in XRD patterns exhibit that the glass samples do not possess long range periodic lattice arrangement of a crystal. A broad hump observed in the XRD patterns further confirms that the samples show amorphous nature. In Fig. 2 we show the room temperature IR spectra of glasses A1-A3 in the range 4000-400 cm⁻¹.

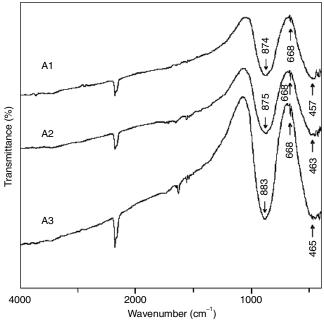
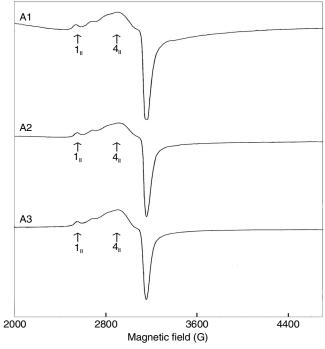
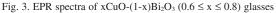


Fig. 2. FTIR spectra of xCuO-(1-x)Bi₂O₃ ($0.6 \le x \le 0.8$) glasses


In copper phosphate glasses, it is reported in literature [1] that copper exists as Cu^+ and Cu^{2+} ions and the environment of Cu^{2+} ion is tetragonally distorted octahedron, $[O_{1/2}-CuO_{4/2}-O_{1/2}]$ [10]. It is also reported in literature [11] that Bi₂O₃ cannot form glasses by itself, in the presence of conditional glass


formers such as V_2O_5 , CuO, *etc.* or a strong polarizing cation such as Si⁴⁺, it reduces its coordination number from six in the [BiO₆] octahedral to three in [BiO₃] pyramidal units and forms the glass network. The sharp and intense peak in the range 883-874 cm⁻¹ in A1-A3 is due to the symmetric stretching [11] vibration mode of [CuO₆] octahedral unit and has approximately the same intensity for A1-A3. The weak peak in the range 457-465 cm⁻¹ in A1-A3 is ascribed to the symmetric bending mode [12] of [BiO₃] pyramidal units. The peak at 668 cm⁻¹ in A1-A5 is due to the symmetric stretching mode [13] of [BiO₆] octahedral unit in the matrices.

The room temperature X-band EPR spectra of the present glasses are shown in Fig. 3. Cu^{2+} ions with S = 1/2 have a nuclear spin of I = 3/2 for both 63 Cu (natural abundance 69 %) and 65 Cu (natural abundance 31 %). For Cu²⁺ ions, a regular octahedral site may not exist, as the cubic symmetry is disturbed by the electronic hole in the degenerate $d_{x^2-y^2}$ orbital and this produces the tetragonal distortion. The EPR spectra of Cu²⁺ ions in glasses can be analyzed by using an axial spin-Hamiltonian of the form:

$$H = \beta_e g_{\parallel} B_z S_z + \beta_e g_{\perp} (B_x S_x + B_y S_y) + A_{\parallel} I_z S_z + A_{\perp} (S_x I_x + S_y I_y)$$
(1)

where the symbols have their usual meaning [14]. The nuclear quadrupole and nuclear Zeeman interaction terms are ignored due to their negligible contribution. From the Fig. 3 it is observed that the absorption spectra are asymmetric, characteristic of $Cu^{2+}(3d^9)$ ions in axially distorted octahedral symmetric sites. It is observed that the EPR lineshapes in the compositional range $(0.6 \le x \le 0.8)$ exhibit high structural stability of the glassy matrix. The spectra show the hyperfine structure due to the interaction of the unpaired electron spin with the nuclear one, I = 3/2, characteristic of Cu^{2+} . The hyperfine structure shows poorly resolved parallel band of the spectra and unresolved perpendicular line typical of 63 Cu or 65 Cu system. Three

hyperfine lines are observed on the parallel features of the spectrum. The hyperfine lines are not observed on the perpendicular features of the spectrum as a result of individual line broadening which is due to the increased dipolar interactions with the ligand field fluctuations around the paramagnetic ion. The values of spin-Hamiltonian parameters g_{\parallel} , g_{\perp} , A_{\parallel} and A_{\perp} were estimated from the spectra and are given in Table-1.

TABLE-1 EPR AND OPTICAL PARAMETERS OF THE GLASS SYSTEM xCuO-(1-x)Bi ₂ O ₃			
Parameters	x = 0.6	x = 0.7	x = 0.8
g _{ll}	2.367	2.354	2.355
g⊥	2.055	2.056	2.056
$A_{\parallel} \times 10^{-4} (cm^{-1})$	147	146	147
$A_{\perp} \times 10^{-4} (cm^{-1})$	33	33	33
λ (nm)	690	690	700
$\Delta E_{xy} (cm^{-1})$	14493	14493	14286
α^2	0.836	0.820	0.824
β_1^2	0.95	0.94	0.92
$\Gamma_{\sigma}(\%)$	36	39	38
$\Gamma_{\pi}(\%)$	10	12	16

The change in spin Hamiltonian parameters with composition can be attributed to the variation of ligand field around Cu^{2+} . The observed values of g_{\parallel} and g_{\perp} suggest that the Cu^{2+} ions in the glasses are coordinated by six ligands that form an octahedron elongated along the Z-axis [15,16]. As $g_{\parallel} > g_{\perp} > g_{e}$ (= 2.0023), it is confirmed that ground state for Cu^{2+} ions is $d_{x^2-y^2}$ orbital (²B_{1g} state), the Cu²⁺ ion being located in distorted octahedral site (D_{4h}) elongated along the Z-axis. The optical absorption spectra of glassy system are shown in Fig. 4. A single absorption band in near-infrared region is observed in all samples, which are attributed to *d*-*d* transition band due to Cu²⁺ ions [17]. Cu²⁺ undergoes a Jahn-Teller distortion, which leads to the splitting of energy levels in terms of ligand field theory [18]. It is observed that the elongated structures are usually more energetically favoured than the compressed ones [19]. Hence, in the present study, the observed broad and asymmetric band for the samples (A1-A3) is due to overlap of ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ and ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$ transitions. The optical absorption spectra of all the samples (A1-A3) are similar, showing one strong band as a result of the transition ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$ at 14286 cm⁻¹. Most of the authors [20,21] assigned the observed optical peak to the ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$ transition and have used this value in the evaluation of the bond parameters. The intensity of absorption band is maximum in A3 (x = 0.8). The transition ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$ is a measure of 10 Dq. The observed absorption bands obtained in the present work are in good agreement with those reported by earlier workers [22-24]. We determine the bonding coefficients of Cu²⁺ from the absorption frequencies of optical absorption bands. By correlating EPR and optical absorption data, we evaluate the bonding coefficients of Cu^{2+} . The bonding between the Cu²⁺ ion and its ligands can be described in terms of the covalency parameters α^2 and β_1^2 ; where α^2 describes the in-plane σ bonding with the copper d_{x^2,y^2} orbital and the β_1^2 is a measure of the in-plane π bonding with the d_{xy} orbital. The values of α^2 lie between 0.5 and 1, the limits of pure covalent and pure ionic bonding, respectively.

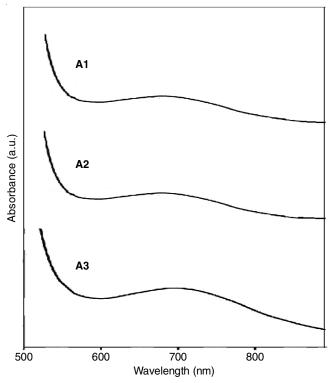


Fig. 4. Optical absorption spectra of xCuO-(1-x)Bi₂O₃ ($0.6 \le x \le 0.8$) glasses

The bonding parameters were evaluated using the equations [25] given below:

$$\alpha^{2} = (g_{\parallel} - g_{e}) + 3/7(g_{\perp} - g_{e}) - A_{\parallel}/0.036 + 0.04$$
(2)

where P, the dipolar hyperfine coupling parameter = 0.036 cm⁻¹ and A = $(1/3 A_{\parallel} + 2/3 A_{\perp})$.

The bonding coefficients of Cu²⁺ are evaluated using the following equations [26] by correlating EPR and optical absorption data.

$$g_{\parallel} = 2.0023 \left(1 - \frac{4\lambda \alpha^2 \beta_1^2}{\Delta E_{xy}} \right)$$
(3)

 ΔE_{xy} is the energy corresponding to the transitions ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$ and λ is the spin-orbit coupling constant (= -828 cm⁻¹) [27]. In the present work, values of α^{2} and β_{1}^{2} are similar in A1-A3 in the composition range ($0.6 \le x \le 0.8$). The calculated values of the parameter α^{2} and β_{1}^{2} given in Table-1, show an ionic nature for the Cu (II)-O in-plane σ bonding and the in-plane π bonding. From the calculated values of α^{2} and β_{1}^{2} , two more variables that give an idea about the basicity of the oxide ion can be calculated. The normalized covalency of the Cu(II)-O in-plane bonding of σ and π symmetry is expressed [28] in terms of bonding coefficients α^{2} and β_{1}^{2} .

$$\Gamma_{\sigma}(\%) = 200 (1-S) (1-\alpha^2)/(1-2S)$$
(4)

$$\Gamma_{\pi} (\%) = 200 (1 - \beta_1^2)$$
(5)

where S is the overlapping integral (S_{oxygen} = 0.076). The normalized covalency (Γ_{π}) of Cu(II)-O bonding of π symmetry indicates the basicity of the oxide ion. We observe that the covalency of the in-plane σ bonding (Γ_{σ}) is constant whereas the covalency of in-plane π bonding (Γ_{π}) increases.

Conclusion

The IR spectral analysis confirms the presence of [BiO₆] octahedral and [BiO₃] pyramidal units in the glass. From the spin-Hamiltonian parameters of EPR and optical absorption data, it is observed that Cu²⁺ ions in all the samples have occupied tetragonally distorted octahedral sites elongated along z-axis with $d_{x^2-y^2}$ orbital (²B_{1g} state) as the ground state. The optical absorption spectra of the glasses show a single broad band due to ²B_{1g} \rightarrow ²B_{2g} transition of Cu²⁺ ions in axially elongated octahedral sites. The values of the molecular orbital bonding parameters show that in-plane σ bonding and the in-plane π bonding are ionic in nature. The covalency of in-plane π bonding (Γ_{π}) is constant, whereas the covalency of in-plane π bonding (Γ_{π}) increases.

REFERENCES

- A. Duran, J.R. Jurado and J.M. Fernandez Navarro, J. Non-Cryst. Solids, 79, 333 (1986);
- https://doi.org/10.1016/0022-3093(86)90232-2.

 2.
 A. Murali and J.L. Rao, J. Phys. Condens. Matter, 11, 7921 (1999); https://doi.org/10.1088/0953-8984/11/40/316.
- R.P.S. Chakradhar, K.P. Ramesh, J.L. Rao and J. Ramakrishna, J. Phys. Condens. Matter, 15, 1469 (2003); https://doi.org/10.1088/0953-8984/15/9/311.
- M. Sayer and A. Mansingh, *Phys. Rev. B*, 6, 4629 (1972); https://doi.org/10.1103/PhysRevB.6.4629.
- U. Selvaraj and K.J. Rao, J. Non-Cryst. Solids, 72, 315 (1985); https://doi.org/10.1016/0022-3093(85)90187-5.
- B.B. Das and R. Ambika, *Chem. Phys. Lett.*, **370**, 670 (2003); https://doi.org/10.1016/S0009-2614(03)00077-0.
- D.L. Griscom and R.E. Griscom, J. Chem. Phys., 47, 2711 (1967); https://doi.org/10.1063/1.1712288.
- I. Ardelean, M. Peteanu, R. Ciceo-Lucacel and I. Bratu, *J. Mater. Sci.: Mater. Electr.*, **11**, 11 (2000); <u>https://doi.org/10.1023/A:1008943901463</u>.
- S. Bale, M. Purnima, C.H. Srinivasu and S. Rahman, J. Alloys Compd., 457, 545 (2008); https://doi.org/10.1016/j.jallcom.2007.03.100.

- V.A. Kolesova, *Fiz. Khim. Stekla*, **12**, 4 (1986).
 A. Bishav and C. Maghrabi, *Phys. Chem. Glasse*
 - A. Bishay and C. Maghrabi, *Phys. Chem. Glasses*, **10**, 1 (1969).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, p. 118 (1986).
- 13. S. Hazra, S. Mandal and A. Ghosh, *J. Chem. Phys.*, **104**, 10041 (1996); <u>https://doi.org/10.1063/1.471748</u>.
- B. Bleaney, K.D. Bowers and D.J.E. Ingram, Proc. Royal Soc. Lond. A Math. Phys. Sci., 228, 147 (1955); https://doi.org/10.1098/rspa.1955.0039.
- I. Ardelean, M. Peteanu, R. Ciceo-Lucacel and I. Bratu, *J. Mater. Sci. Mater. Electron.*, **11**, 11 (2000); https://doi.org/10.1023/A:1008943901463.
- T. Taoufik, M. Haddad, A. Nadiri, R. Brochu and R. Berger, J. Phys. Chem. Solids, 60, 701 (1999); https://doi.org/10.1016/S0022-3697(98)00067-5.
- I. Siegel and J.A. Lorenc, J. Chem. Phys., 45, 2315 (1966); https://doi.org/10.1063/1.1727927.
- A.A. Ahmed, A.F. Abbas and F.A. Moustafa, *Phys. Chem. Glasses*, 24, 43 (1983).
- C.K. Jorgensen, L.H. Smith, G. Hanshoff and H. Prydz, Acta Chem. Scand., 9, 1362 (1955); https://doi.org/10.3891/acta.chem.scand.09-1362.
- A.H. Dietzel, *Phys. Chem. Glasses*, 24, 172 (1983);
- B.V. Raghavaiah, C. Laxmikanth and N. Veeraiah, *Opt. Commun.*, 235, 341 (2004);
- https://doi.org/10.1016/j.optcom.2004.02.082. 22. G. van Veen, *J. Magn. Reson.*, **30**, 91 (1969);
- https://doi.org/10.1016/0022-2364(78)90228-7. 23. H.G. Hetch and T.S. Johnston, *J. Chem. Phys.*, **46**, 23 (1967);
- https://doi.org/10.1063/1.1840378.
 24. V. Kamalaker, G. Upender, M. Prasad and V. Chandra Mouli, *Indian J. Pure Appl. Phys.*, 48, 709 (2010).
- H.A. Kuska, M.T. Rogers and R.E. Drullinger, J. Phys. Chem., 71, 109 (1967);
- https://doi.org/10.1021/j100860a015. 26. D. Kivelson and R. Neiman, J. Chem. Phys., **35**, 149 (1961);
- <u>https://doi.org/10.1063/1.1731880</u>.
 27. F.M. Mabbs and D.J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall: London, p. 154 (1973).
- A. Yadav, V.P. Seth and P. Chand, J. Mater. Sci. Lett., 6, 468 (1987); https://doi.org/10.1007/BF01756801.