Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasonic Studies on Ion-Solvent Interactions of Tetra-n-butylammonium Bromide in Aqueous Solution of 1,3-Dioxolane and 2,2-Dimethoxypropane at Different Temperatures
Corresponding Author(s) : Rojalin Sahu
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
Tetra-n-butylammonium bromide (TBAB) is made soluble in different solvents like 10 % 1,3-dioxolane-water and 10 % dimethoxypropane-water. Ultrasonic velocity (U), density (r) and coefficient of viscosity (h) are determined at different temperatures i.e. at 298.15, 303.15, 308.15 and 313.15 K. These values of ultrasonic velocity (U), density (r) and co-efficient of viscosity (h) are used to calculate the thermo acoustic properties like isentropic compressibility (bs), molar compressibility (W), acoustic impedance (Z), molar sound velocity (R), relative association (RA), intermolecular free length (Lf), free volume (Vf), internal pressure (pi), isothermal compressibility (bT). The results obtained were analyzed to interpret the ion-ion and ion-solvent interactions occurring in the solutions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Apelblat, J. Solution Chem., 36, 1437 (2007); https://doi.org/10.1007/s10953-007-9195-5.
- F.J. Millero, in ed.: R.A. Horne, Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes, Wiley-Interscience, New York, p. 519 (1972).
- H.J. Ledon, Org. Synth., 59, 66 (1979); https://doi.org/10.15227/orgsyn.059.0066.
- S.R. Aswale and S.S. Aswale, J. Chem. Res., 3, 233 (2011).
- W.Y. Wen, ed.: R.A. Horne, Water and Aqueous Solutions, John Wile & Sons: New York, Chap. 15, p. 613 (1972).
- E.R. Nightingale Jr., J. Phys. Chem., 66, 894 (1962); https://doi.org/10.1021/j100811a032.
- H.S. Frank and W.Y. Wen, Discuss. Faraday Soc., 24, 133 (1957); https://doi.org/10.1039/df9572400133.
- H. Rueterjans, F. Schreiner, U. Sage and T. Ackermann, J. Phys. Chem., 73, 986 (1969); https://doi.org/10.1021/j100724a038.
- W.Y. Wen and S. Saito, J. Phys. Chem., 68, 2639 (1964); https://doi.org/10.1021/j100791a042.
- R.A. Daignault and E.L. Eliel, Organic Synthesis Collections, vol. 5, p. 303 (1973).
- G. Douheret and A. Pal, J. Chem. Eng. Data, 33, 40 (1988); https://doi.org/10.1021/je00051a014.
- T.S. Murthy, B. Rambabu and K. Laxminarayana, Acoust. Lett., 17, 111 (1993).
- E.R. Nightingale Jr., Phys. Chem., 66, 894 (1962); https://doi.org/10.1021/j100811a032.
- P.S. Nikam and A.B. Nikumbh, J. Chem. Eng. Data, 47, 400 (2002); https://doi.org/10.1021/je0102762.
- P.S. Nikam, H. Mehdi, T.B. Pawar and A.B. Sawant, Indian J. Pure Appl. Phys., 42, 172 (2004).
- Y. Nagano, M. Sakiyama, T. Fujiwara and Y. Kondo, J. Phys. Chem., 92, 5823 (1988); https://doi.org/10.1021/j100331a054.
- H. Hooshyar and B. Khezri, Phys. Chem. Liq., 54, 663 (2016); https://doi.org/10.1080/00319104.2016.1140762.
- T.G. Coker, J. Ambrose and G.J. Janz, J. Am. Chem. Soc., 92, 5293 (1970); https://doi.org/10.1021/ja00721a001.
- J.A. Kitchner, Findlay Practical Physical Chemistry, Longman: London, edn 8, p. 70 (1954).
- M.N. Roy and B. Sinha, J. Mol. Liq., 133, 89 (2007); https://doi.org/10.1016/j.molliq.2006.07.009.
- B. Sinha, B.K. Sarkar and M.N. Roy, J. Chem. Thermodyn., 40, 394 (2008); https://doi.org/10.1016/j.jct.2007.09.012.
- B.B. Nanda, B. Nanda and P.C. Mohanty, J. Mol. Liq., 171, 50 (2012); https://doi.org/10.1016/j.molliq.2012.03.011.
- B. Jacobson, P.A. Heedman, R. Pesola,A.I. Virtanen and N.A. Sörensen, Acta Chem. Scand., 7, 705 (1953); https://doi.org/10.3891/acta.chem.scand.07-0705.
- D.O. Masson, Philos. Mag., 8, 218 (1929); https://doi.org/10.1080/14786440808564880.
- B.B. Nanda, Indian J. Pure Appl. Phys., 54, 471 (2016).
- G. Nath and R. Paikaray, Indian J. Phys., 83, 1309 (2009); https://doi.org/10.1007/s12648-009-0111-2.
- B.B. Nanda, Int. J. Res. Rev. Pharm. Appl. Sci., 6, 1290 (2016).
- J.F. Kincaid and H. Eyring, J. Chem. Phys., 6, 620 (1938); https://doi.org/10.1063/1.1750134.
- S. Thirumaran and K.J. Sabu, Indian J. Pure Appl. Phys., 47, 87 (2009).
- T.M. Aminabhavi, M.I. Aralaguppi, S.S. Joshi, S.B. Harogopped, R.S. Khinnavar and R.H. Balungi, Indian J. Technol., 30, 303 (1992).
- C.V. Suryanarayana, J. Acoust. Soc. Ind., 7, 131 (1979).
References
A. Apelblat, J. Solution Chem., 36, 1437 (2007); https://doi.org/10.1007/s10953-007-9195-5.
F.J. Millero, in ed.: R.A. Horne, Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes, Wiley-Interscience, New York, p. 519 (1972).
H.J. Ledon, Org. Synth., 59, 66 (1979); https://doi.org/10.15227/orgsyn.059.0066.
S.R. Aswale and S.S. Aswale, J. Chem. Res., 3, 233 (2011).
W.Y. Wen, ed.: R.A. Horne, Water and Aqueous Solutions, John Wile & Sons: New York, Chap. 15, p. 613 (1972).
E.R. Nightingale Jr., J. Phys. Chem., 66, 894 (1962); https://doi.org/10.1021/j100811a032.
H.S. Frank and W.Y. Wen, Discuss. Faraday Soc., 24, 133 (1957); https://doi.org/10.1039/df9572400133.
H. Rueterjans, F. Schreiner, U. Sage and T. Ackermann, J. Phys. Chem., 73, 986 (1969); https://doi.org/10.1021/j100724a038.
W.Y. Wen and S. Saito, J. Phys. Chem., 68, 2639 (1964); https://doi.org/10.1021/j100791a042.
R.A. Daignault and E.L. Eliel, Organic Synthesis Collections, vol. 5, p. 303 (1973).
G. Douheret and A. Pal, J. Chem. Eng. Data, 33, 40 (1988); https://doi.org/10.1021/je00051a014.
T.S. Murthy, B. Rambabu and K. Laxminarayana, Acoust. Lett., 17, 111 (1993).
E.R. Nightingale Jr., Phys. Chem., 66, 894 (1962); https://doi.org/10.1021/j100811a032.
P.S. Nikam and A.B. Nikumbh, J. Chem. Eng. Data, 47, 400 (2002); https://doi.org/10.1021/je0102762.
P.S. Nikam, H. Mehdi, T.B. Pawar and A.B. Sawant, Indian J. Pure Appl. Phys., 42, 172 (2004).
Y. Nagano, M. Sakiyama, T. Fujiwara and Y. Kondo, J. Phys. Chem., 92, 5823 (1988); https://doi.org/10.1021/j100331a054.
H. Hooshyar and B. Khezri, Phys. Chem. Liq., 54, 663 (2016); https://doi.org/10.1080/00319104.2016.1140762.
T.G. Coker, J. Ambrose and G.J. Janz, J. Am. Chem. Soc., 92, 5293 (1970); https://doi.org/10.1021/ja00721a001.
J.A. Kitchner, Findlay Practical Physical Chemistry, Longman: London, edn 8, p. 70 (1954).
M.N. Roy and B. Sinha, J. Mol. Liq., 133, 89 (2007); https://doi.org/10.1016/j.molliq.2006.07.009.
B. Sinha, B.K. Sarkar and M.N. Roy, J. Chem. Thermodyn., 40, 394 (2008); https://doi.org/10.1016/j.jct.2007.09.012.
B.B. Nanda, B. Nanda and P.C. Mohanty, J. Mol. Liq., 171, 50 (2012); https://doi.org/10.1016/j.molliq.2012.03.011.
B. Jacobson, P.A. Heedman, R. Pesola,A.I. Virtanen and N.A. Sörensen, Acta Chem. Scand., 7, 705 (1953); https://doi.org/10.3891/acta.chem.scand.07-0705.
D.O. Masson, Philos. Mag., 8, 218 (1929); https://doi.org/10.1080/14786440808564880.
B.B. Nanda, Indian J. Pure Appl. Phys., 54, 471 (2016).
G. Nath and R. Paikaray, Indian J. Phys., 83, 1309 (2009); https://doi.org/10.1007/s12648-009-0111-2.
B.B. Nanda, Int. J. Res. Rev. Pharm. Appl. Sci., 6, 1290 (2016).
J.F. Kincaid and H. Eyring, J. Chem. Phys., 6, 620 (1938); https://doi.org/10.1063/1.1750134.
S. Thirumaran and K.J. Sabu, Indian J. Pure Appl. Phys., 47, 87 (2009).
T.M. Aminabhavi, M.I. Aralaguppi, S.S. Joshi, S.B. Harogopped, R.S. Khinnavar and R.H. Balungi, Indian J. Technol., 30, 303 (1992).
C.V. Suryanarayana, J. Acoust. Soc. Ind., 7, 131 (1979).