Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Initial Proteomic Identification of Secreted Proteins of White-Rot Fungus Porodaedalea pini Grown on Liquid Medium
Corresponding Author(s) : Shinso Yokota
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
Porodaedalea pini is a white-rot fungus that attacks conifers and secretes different kinds of extracellular enzymes. To our best of knowledge, this is the first report identifying the secreted proteome of P. pini grown on liquid medium. Some proteins involved in carbohydrate metabolism were identified by peptide mass fingerprinting (PMF) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS). The identified proteins were classified according to their biochemical roles as carbohydrate transport and metabolism, amino acid transport and metabolism, aromatic compound metabolism and oxidative stress responses, cellular processes and signaling and hypothetical proteins. Furthermore, one spot of the proteins in the carbohydrate transport and metabolism categories may be correlated to the hydrolytic enzymes secretion. This protein was homologous to the glycoside hydrolase family 1 and seems to be a b-glucosidase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Tomsovsk, P. Sedlák and L. Jankovsk, Mycol. Prog., 9, 225 (2010); https://doi.org/10.1007/s11557-009-0628-y.
- W. Szewczyk, H. Kwasna, J.B. Borowczyk and M.B. Wasilewska, Cent. Eur. J. Biol., 9, 614 (2014); https://doi.org/10.2478/s11535-014-0293-2.
- W.A. Ayer, D.J. Muir and P. Chakravarty, Phytochemistry, 42, 1321 (1996); https://doi.org/10.1016/0031-9422(96)00125-2.
- Sunardi, J. Tanabe, F. Ishiguri, J. Ohshima, K. Iizuka and S. Yokota, Int. Biodeterior. Biodegrad., 110, 108 (2016); https://doi.org/10.1016/j.ibiod.2016.02.022.
- C.Y. Liew, A. Husaini, H. Hussain, S. Muid, K.C. Liew and H.A. Roslan, World J. Microbiol. Biotechnol., 27, 1457 (2011); https://doi.org/10.1007/s11274-010-0598-x.
- M. Jaszek, K. Kos,A. Matuszewska, M. Graz, D. Stefaniuk, M. OsiñskaJaroszuk, M. Prendecka, E. Józwik and K. Grzywnowicz, Appl. Biochem. Biotechnol., 174, 644 (2014); https://doi.org/10.1007/s12010-014-1064-2.
- P. Jiang, L. Yuan, D. Cai, L. Jiao and L. Zhang, Carbohydr. Polym., 117, 600 (2015); https://doi.org/10.1016/j.carbpol.2014.10.013.
- P.-W. Chu, M.-N. Yap, C.-Y. Wu, C.-M. Huang, F.-M. Pan, M.-J. Tseng and S.-T. Chen, Electrophoresis, 21, 1740 (2000); https://doi.org/10.1002/(SICI)1522-2683(20000501)21:9<1740::AIDELPS1740>3.0.CO;2-N.
- M.L. Medina, U.A. Kiernan and W.A. Francisco, Fungal Genet. Biol., 41, 327 (2004); https://doi.org/10.1016/j.fgb.2003.11.014.
- A. Manavalan, S.S. Adav and S.K. Sze, J. Proteomics, 75, 642 (2011); https://doi.org/10.1016/j.jprot.2011.09.001.
- P.A. Haynes, S.P. Gygi, D. Figeys and R. Aebersold, Electrophoresis, 19, 1862 (1998); https://doi.org/10.1002/elps.1150191104.
- M. Alfaro, J.A. Oguiza, L. Ramirez and A.G. Pisabarro, J. Proteomics, 102, 28 (2014); https://doi.org/10.1016/j.jprot.2014.03.001.
- B. Norkrans, Symbolae Botanicae Upsalienses, vol. 11, p. 126 (1950).
- T.M. Wood and K.M. Bhat, Methods Enzymol., 160, 87 (1988); https://doi.org/10.1016/0076-6879(88)60109-1.
- G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
- M. Samejima and K.L. Eriksson, Eur. J. Biochem., 207, 103 (1992); https://doi.org/10.1111/j.1432-1033.1992.tb17026.x.
- M.M. Bradford, Anal. Biochem., 72, 248 (1976); https://doi.org/10.1016/0003-2697(76)90527-3.
- A. Shevchenko, M. Wilm, O. Vorm and M. Mann, Anal. Chem., 68, 850 (1996); https://doi.org/10.1021/ac950914h.
- S. Damodaran, T.D. Wood, P. Nagarajan and R.A. Rabin, Geno. Prot. Bioinfo., 5, 152 (2007); https://doi.org/10.1016/S1672-0229(08)60002-9.
- P. Ramachandran, M.K. Tiwari, R.K. Singh, J.-R. Haw, M. Jeya and J.-K. Lee, Process Biochem., 47, 99 (2012); https://doi.org/10.1016/j.procbio.2011.10.015.
- S. Yang, C. Hua, Q. Yan, Y. Li and Z. Jiang, Carbohydr. Polym., 92, 784 (2013); https://doi.org/10.1016/j.carbpol.2012.09.086.
- M.C. Reilly, S.B. Levery, S.A. Castle, J.S. Klutts and T.L. Doering, J. Biol. Chem., 284, 36118 (2009); https://doi.org/10.1074/jbc.M109.056226.
- F. Matsuzaki, M. Shimizu and H. Wariishi, J. Proteome Res., 7, 2342 (2008); https://doi.org/10.1021/pr700617s.
- T.K. Chakraborty, D. Basu, N. Das, S. Sengupta and M. Mukherjee, FEMS Microbiol. Lett., 236, 307 (2004); https://doi.org/10.1111/j.1574-6968.2004.tb09662.x.
- C. Guo, P. He, D. Lu, A. Shen and N. Jiang, J. Appl. Microbiol., 101, 139 (2006); https://doi.org/10.1111/j.1365-2672.2006.02915.x.
- C.A. Dowd, C.M. Buckley and D. Sheehan, Biochem. J., 324, 243 (1997); https://doi.org/10.1042/bj3240243.
- M. Morel, A.A. Ngadin, M. Droux, J. Jacquot and E. Gelhaye, Cell. Mol. Life Sci., 66, 3711 (2009); https://doi.org/10.1007/s00018-009-0104-5.
- Y. Otsuka, T. Sonoki, S. Ikeda, S. Kajita, M. Nakamura and Y. Katayama, Eur. J. Biochem., 270, 2353 (2003); https://doi.org/10.1046/j.1432-1033.2003.03545.x.
- E. Masai,A. Ichimura, Y. Sato, K. Miyauchi, Y. Katayama and M. Fukuda, J. Bacteriol., 185, 1768 (2003); https://doi.org/10.1128/JB.185.6.1768-1775.2003.
- J.F. Peberdy, Trends Biotechnol., 12, 50 (1994); https://doi.org/10.1016/0167-7799(94)90100-7.
- Y. Liang, L. Pan and Y. Lin, Biosci. Biotechnol. Biochem., 73, 192 (2009); https://doi.org/10.1271/bbb.80500.
References
M. Tomsovsk, P. Sedlák and L. Jankovsk, Mycol. Prog., 9, 225 (2010); https://doi.org/10.1007/s11557-009-0628-y.
W. Szewczyk, H. Kwasna, J.B. Borowczyk and M.B. Wasilewska, Cent. Eur. J. Biol., 9, 614 (2014); https://doi.org/10.2478/s11535-014-0293-2.
W.A. Ayer, D.J. Muir and P. Chakravarty, Phytochemistry, 42, 1321 (1996); https://doi.org/10.1016/0031-9422(96)00125-2.
Sunardi, J. Tanabe, F. Ishiguri, J. Ohshima, K. Iizuka and S. Yokota, Int. Biodeterior. Biodegrad., 110, 108 (2016); https://doi.org/10.1016/j.ibiod.2016.02.022.
C.Y. Liew, A. Husaini, H. Hussain, S. Muid, K.C. Liew and H.A. Roslan, World J. Microbiol. Biotechnol., 27, 1457 (2011); https://doi.org/10.1007/s11274-010-0598-x.
M. Jaszek, K. Kos,A. Matuszewska, M. Graz, D. Stefaniuk, M. OsiñskaJaroszuk, M. Prendecka, E. Józwik and K. Grzywnowicz, Appl. Biochem. Biotechnol., 174, 644 (2014); https://doi.org/10.1007/s12010-014-1064-2.
P. Jiang, L. Yuan, D. Cai, L. Jiao and L. Zhang, Carbohydr. Polym., 117, 600 (2015); https://doi.org/10.1016/j.carbpol.2014.10.013.
P.-W. Chu, M.-N. Yap, C.-Y. Wu, C.-M. Huang, F.-M. Pan, M.-J. Tseng and S.-T. Chen, Electrophoresis, 21, 1740 (2000); https://doi.org/10.1002/(SICI)1522-2683(20000501)21:9<1740::AIDELPS1740>3.0.CO;2-N.
M.L. Medina, U.A. Kiernan and W.A. Francisco, Fungal Genet. Biol., 41, 327 (2004); https://doi.org/10.1016/j.fgb.2003.11.014.
A. Manavalan, S.S. Adav and S.K. Sze, J. Proteomics, 75, 642 (2011); https://doi.org/10.1016/j.jprot.2011.09.001.
P.A. Haynes, S.P. Gygi, D. Figeys and R. Aebersold, Electrophoresis, 19, 1862 (1998); https://doi.org/10.1002/elps.1150191104.
M. Alfaro, J.A. Oguiza, L. Ramirez and A.G. Pisabarro, J. Proteomics, 102, 28 (2014); https://doi.org/10.1016/j.jprot.2014.03.001.
B. Norkrans, Symbolae Botanicae Upsalienses, vol. 11, p. 126 (1950).
T.M. Wood and K.M. Bhat, Methods Enzymol., 160, 87 (1988); https://doi.org/10.1016/0076-6879(88)60109-1.
G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
M. Samejima and K.L. Eriksson, Eur. J. Biochem., 207, 103 (1992); https://doi.org/10.1111/j.1432-1033.1992.tb17026.x.
M.M. Bradford, Anal. Biochem., 72, 248 (1976); https://doi.org/10.1016/0003-2697(76)90527-3.
A. Shevchenko, M. Wilm, O. Vorm and M. Mann, Anal. Chem., 68, 850 (1996); https://doi.org/10.1021/ac950914h.
S. Damodaran, T.D. Wood, P. Nagarajan and R.A. Rabin, Geno. Prot. Bioinfo., 5, 152 (2007); https://doi.org/10.1016/S1672-0229(08)60002-9.
P. Ramachandran, M.K. Tiwari, R.K. Singh, J.-R. Haw, M. Jeya and J.-K. Lee, Process Biochem., 47, 99 (2012); https://doi.org/10.1016/j.procbio.2011.10.015.
S. Yang, C. Hua, Q. Yan, Y. Li and Z. Jiang, Carbohydr. Polym., 92, 784 (2013); https://doi.org/10.1016/j.carbpol.2012.09.086.
M.C. Reilly, S.B. Levery, S.A. Castle, J.S. Klutts and T.L. Doering, J. Biol. Chem., 284, 36118 (2009); https://doi.org/10.1074/jbc.M109.056226.
F. Matsuzaki, M. Shimizu and H. Wariishi, J. Proteome Res., 7, 2342 (2008); https://doi.org/10.1021/pr700617s.
T.K. Chakraborty, D. Basu, N. Das, S. Sengupta and M. Mukherjee, FEMS Microbiol. Lett., 236, 307 (2004); https://doi.org/10.1111/j.1574-6968.2004.tb09662.x.
C. Guo, P. He, D. Lu, A. Shen and N. Jiang, J. Appl. Microbiol., 101, 139 (2006); https://doi.org/10.1111/j.1365-2672.2006.02915.x.
C.A. Dowd, C.M. Buckley and D. Sheehan, Biochem. J., 324, 243 (1997); https://doi.org/10.1042/bj3240243.
M. Morel, A.A. Ngadin, M. Droux, J. Jacquot and E. Gelhaye, Cell. Mol. Life Sci., 66, 3711 (2009); https://doi.org/10.1007/s00018-009-0104-5.
Y. Otsuka, T. Sonoki, S. Ikeda, S. Kajita, M. Nakamura and Y. Katayama, Eur. J. Biochem., 270, 2353 (2003); https://doi.org/10.1046/j.1432-1033.2003.03545.x.
E. Masai,A. Ichimura, Y. Sato, K. Miyauchi, Y. Katayama and M. Fukuda, J. Bacteriol., 185, 1768 (2003); https://doi.org/10.1128/JB.185.6.1768-1775.2003.
J.F. Peberdy, Trends Biotechnol., 12, 50 (1994); https://doi.org/10.1016/0167-7799(94)90100-7.
Y. Liang, L. Pan and Y. Lin, Biosci. Biotechnol. Biochem., 73, 192 (2009); https://doi.org/10.1271/bbb.80500.