Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Photocatalysis of g-Fe2O3 Nanoparticles for Degradation of Cibacron Brilliant Yellow 3G-P
Corresponding Author(s) : Hassan A. Alshamsi
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
In this study, the maghemite g-Fe2O3 nanoparticles were prepared using a co-precipitation method. The structural, morphological, thermal and its optical properties have been examined using different characterization techniques such as X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy, Fourier transform infrared spectrometry, UV/visible spectrophotometer and thermogravimetric analysis. The results of XRD analysis showed the cubic structure of the g-Fe2O3 nanoparticles. Furthermore, the morphology of the g-Fe2O3 nanoparticles was obtained from SEM and AFM. The photocatalytic degradation of Cibacron Brilliant Yellow 3G-P (CB) was studied under visible light using g-Fe2O3 nanoparticles as a photocatalyst. There are many factors, which has an effect on the efficiency of this process. Therefore a study was conducted on the effect of several parameters on g-Fe2O3 like amount of catalyst, concentration of Cibacron Brilliant Yellow 3G-P and pH of solution. The results showed that efficiency of g-Fe2O3 nanoparticles 68 % after 120 min which is more effective on the degradation of Cibacron Brilliant Yellow 3G-P. The photo degraded samples were analyzed by chemical oxygen demand (COD) analysis UV-visible spectrophotometer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Kubickova, D. Niznansky, M. Morales Herrero, G. Salas and J. Vejpravova, Appl. Phys. Lett., 104, 223105 (2014); https://doi.org/10.1063/1.4881331.
- H. Shokrollahi, J. Magn. Magn. Mater., 426, 74 (2017); https://doi.org/10.1016/j.jmmm.2016.11.033.
- W. Wu, X. Xiao, S. Zhang, T. Peng, J. Zhou, F. Ren and C. Jiang, Nanoscale Res. Lett., 5, 1474 (2010); https://doi.org/10.1007/s11671-010-9664-4.
- R.A. Bepari, P. Bharali and B.K. Das, J. Saudi Chem. Soc., 21, S170 (2017); https://doi.org/10.1016/j.jscs.2013.12.010.
- S. Saha and A.K. Bhunia, J. Phys. Sci., 17, 191 (2013).
- K. Petcharoen and A. Sirivat, Mater. Sci. Eng. B, 177, 421 (2012); https://doi.org/10.1016/j.mseb.2012.01.003.
- R.A. Bepari, P. Bharali and B.K. Das, J. Saudi Chem. Soc., 21S, s170 (2017); https://doi.org/10.1016/j.jscs.2013.12.010.
- M. Aliahmad and N.N. Moghaddam, Mater. Sci. Pol., 31, 264 (2013); https://doi.org/10.2478/s13536-012-0100-6.
- S. Capone, M. Manera, A. Taurino, P. Siciliano, R. Rella, S. Luby, M. Benkovicova, P. Siffalovic and E. Majkova, Langmuir, 30, 1190 (2014); https://doi.org/10.1021/la404542u.
- R. Ianos, E.-A. Tãculescu (Moacã), C. Pãcurariu and D. Niznansky, Mater. hem. Phys., 148, 705 (2014); https://doi.org/10.1016/j.matchemphys.2014.08.038.
- T. Daou, G. Pourroy, S. Bégin-Colin, J. Greneche, C. Ulhaq-Bouillet, P. Legaré, P. Bernhardt, C. Leuvrey and G. Rogez, Chem. Mater., 18, 4399 (2006); https://doi.org/10.1021/cm060805r.
- J. Hu, G. Chen and I.M. Lo, Water Res., 39, 4528 (2005); https://doi.org/10.1016/j.watres.2005.05.051.
- E. Darezereshki, M. Ranjbar and F. Bakhtiari, J. Alloys Comp., 502, 257 (2010); https://doi.org/10.1016/j.jallcom.2010.04.163.
- B. Wen, J. Li, Y. Lin, X. Liu, J. Fu, H. Miao and Q. Zhang, Mater. Chem. Phys., 128, 35 (2011); https://doi.org/10.1016/j.matchemphys.2011.01.012.
- F. Achouri, S. Corbel, A. Aboulaich, L. Balan, A. Ghrabi, M.B. Said and R. Schneide, J. Phys. Chem. Solids, 75, 1081 (2014); https://doi.org/10.1016/j.jpcs.2014.05.013.
- Z. Cheng, A.L.K. Tan, Y. Tao, D. Shan, K.E. Ting and X.J. Yin, Int. J. Photoenergy, Article ID 608298 (2012); https://doi.org/10.1155/2012/608298.
- W. Wu, C.J. Changzhong Jiang and V.A.L. Roy, Nanoscale, 7, 38 (2015); https://doi.org/10.1039/C4NR04244A.
- W. Wu, Z. Wu, T. Yu, C. Jiang and W.S. Kim, Sci. Technol. Adv. Mater., 16, 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501.
- V. Patsula, M. Moskvin, S. Dutz and D. Horák, J. Phys. Chem. Solids, 88, 24 (2016); https://doi.org/10.1016/j.jpcs.2015.09.008.
- C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järas, C. Civera, C. Solans and G.R. Kuttuva, Langmuir, 28, 8479 (2012); https://doi.org/10.1021/la300599q.
- L. Jayarathna,A. Bandara, W.J. Ng and R. Weerasooriya, J. Environ. Health Sci. Eng., 13, 54 (2015); https://doi.org/10.1186/s40201-015-0210-2.
- W. Wu, X. Xiao, S. Zhang, J. Zhou, L. Fan, F. Ren and C. Jiang, J. Phys. Chem. C, 114, 16092 (2010); https://doi.org/10.1021/jp1010154.
- P. Saravanan, J.-H. Hsu, D. Sivaprahasam and S.V. Kamat, J. Magn. Magn. Mater., 346, 175 (2013); https://doi.org/10.1016/j.jmmm.2013.07.023.
- O. Stefanescu, C. Davidescu and C. Muntean, Ann. West Univ. Timisoara Series of Chemistry, 24, 69 (2015).
- A. Asfaram, M. Ghaedi, S. Hajati and A. Goudarzi, Ultrason. Sonochem., 32, 418 (2016); https://doi.org/10.1016/j.ultsonch.2016.04.011.
- M. Belkhedkar and A. Ubale, Int. J. Mater. Chem., 4, 109 (2014).
- C. Liang, H. Liu, J. Zhou, X. Peng and H. Zhang, J. Chem., Article ID 791829 (2015); https://doi.org/10.1155/2015/791829.
- S.S. Al-Taweel and H.R. Saud, J. Chem. Pharm. Res., 8, 620 (2016).
- L.S.J. Al-Hayder and M.K. Al-Hussainawy, Int. J. Chemtech Res., 9, 337 (2016).
- L.K. Mun, A.H. Abdullah, M.Z. Hussein and Z. Zainal, Sains Malays., 43, 437 (2014).
- Z. Jia, J. Miao, H.-B. Lu, D. Habibi, W. Zhang and L. Zhang, J. Taiwan Inst. Chem. Eng., 60, 267 (2016); https://doi.org/10.1016/j.jtice.2015.10.012.
- M.N. Chong, B. Jin, C.W. Chow and C. Saint, Water Res., 44, 2997 (2010); https://doi.org/10.1016/j.watres.2010.02.039.
- L.S.J. Al-Hayder and M.H.J. Al-Juboory, J. Chem. Pharm. Res., 7, 1138 (2015).
References
S. Kubickova, D. Niznansky, M. Morales Herrero, G. Salas and J. Vejpravova, Appl. Phys. Lett., 104, 223105 (2014); https://doi.org/10.1063/1.4881331.
H. Shokrollahi, J. Magn. Magn. Mater., 426, 74 (2017); https://doi.org/10.1016/j.jmmm.2016.11.033.
W. Wu, X. Xiao, S. Zhang, T. Peng, J. Zhou, F. Ren and C. Jiang, Nanoscale Res. Lett., 5, 1474 (2010); https://doi.org/10.1007/s11671-010-9664-4.
R.A. Bepari, P. Bharali and B.K. Das, J. Saudi Chem. Soc., 21, S170 (2017); https://doi.org/10.1016/j.jscs.2013.12.010.
S. Saha and A.K. Bhunia, J. Phys. Sci., 17, 191 (2013).
K. Petcharoen and A. Sirivat, Mater. Sci. Eng. B, 177, 421 (2012); https://doi.org/10.1016/j.mseb.2012.01.003.
R.A. Bepari, P. Bharali and B.K. Das, J. Saudi Chem. Soc., 21S, s170 (2017); https://doi.org/10.1016/j.jscs.2013.12.010.
M. Aliahmad and N.N. Moghaddam, Mater. Sci. Pol., 31, 264 (2013); https://doi.org/10.2478/s13536-012-0100-6.
S. Capone, M. Manera, A. Taurino, P. Siciliano, R. Rella, S. Luby, M. Benkovicova, P. Siffalovic and E. Majkova, Langmuir, 30, 1190 (2014); https://doi.org/10.1021/la404542u.
R. Ianos, E.-A. Tãculescu (Moacã), C. Pãcurariu and D. Niznansky, Mater. hem. Phys., 148, 705 (2014); https://doi.org/10.1016/j.matchemphys.2014.08.038.
T. Daou, G. Pourroy, S. Bégin-Colin, J. Greneche, C. Ulhaq-Bouillet, P. Legaré, P. Bernhardt, C. Leuvrey and G. Rogez, Chem. Mater., 18, 4399 (2006); https://doi.org/10.1021/cm060805r.
J. Hu, G. Chen and I.M. Lo, Water Res., 39, 4528 (2005); https://doi.org/10.1016/j.watres.2005.05.051.
E. Darezereshki, M. Ranjbar and F. Bakhtiari, J. Alloys Comp., 502, 257 (2010); https://doi.org/10.1016/j.jallcom.2010.04.163.
B. Wen, J. Li, Y. Lin, X. Liu, J. Fu, H. Miao and Q. Zhang, Mater. Chem. Phys., 128, 35 (2011); https://doi.org/10.1016/j.matchemphys.2011.01.012.
F. Achouri, S. Corbel, A. Aboulaich, L. Balan, A. Ghrabi, M.B. Said and R. Schneide, J. Phys. Chem. Solids, 75, 1081 (2014); https://doi.org/10.1016/j.jpcs.2014.05.013.
Z. Cheng, A.L.K. Tan, Y. Tao, D. Shan, K.E. Ting and X.J. Yin, Int. J. Photoenergy, Article ID 608298 (2012); https://doi.org/10.1155/2012/608298.
W. Wu, C.J. Changzhong Jiang and V.A.L. Roy, Nanoscale, 7, 38 (2015); https://doi.org/10.1039/C4NR04244A.
W. Wu, Z. Wu, T. Yu, C. Jiang and W.S. Kim, Sci. Technol. Adv. Mater., 16, 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501.
V. Patsula, M. Moskvin, S. Dutz and D. Horák, J. Phys. Chem. Solids, 88, 24 (2016); https://doi.org/10.1016/j.jpcs.2015.09.008.
C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järas, C. Civera, C. Solans and G.R. Kuttuva, Langmuir, 28, 8479 (2012); https://doi.org/10.1021/la300599q.
L. Jayarathna,A. Bandara, W.J. Ng and R. Weerasooriya, J. Environ. Health Sci. Eng., 13, 54 (2015); https://doi.org/10.1186/s40201-015-0210-2.
W. Wu, X. Xiao, S. Zhang, J. Zhou, L. Fan, F. Ren and C. Jiang, J. Phys. Chem. C, 114, 16092 (2010); https://doi.org/10.1021/jp1010154.
P. Saravanan, J.-H. Hsu, D. Sivaprahasam and S.V. Kamat, J. Magn. Magn. Mater., 346, 175 (2013); https://doi.org/10.1016/j.jmmm.2013.07.023.
O. Stefanescu, C. Davidescu and C. Muntean, Ann. West Univ. Timisoara Series of Chemistry, 24, 69 (2015).
A. Asfaram, M. Ghaedi, S. Hajati and A. Goudarzi, Ultrason. Sonochem., 32, 418 (2016); https://doi.org/10.1016/j.ultsonch.2016.04.011.
M. Belkhedkar and A. Ubale, Int. J. Mater. Chem., 4, 109 (2014).
C. Liang, H. Liu, J. Zhou, X. Peng and H. Zhang, J. Chem., Article ID 791829 (2015); https://doi.org/10.1155/2015/791829.
S.S. Al-Taweel and H.R. Saud, J. Chem. Pharm. Res., 8, 620 (2016).
L.S.J. Al-Hayder and M.K. Al-Hussainawy, Int. J. Chemtech Res., 9, 337 (2016).
L.K. Mun, A.H. Abdullah, M.Z. Hussein and Z. Zainal, Sains Malays., 43, 437 (2014).
Z. Jia, J. Miao, H.-B. Lu, D. Habibi, W. Zhang and L. Zhang, J. Taiwan Inst. Chem. Eng., 60, 267 (2016); https://doi.org/10.1016/j.jtice.2015.10.012.
M.N. Chong, B. Jin, C.W. Chow and C. Saint, Water Res., 44, 2997 (2010); https://doi.org/10.1016/j.watres.2010.02.039.
L.S.J. Al-Hayder and M.H.J. Al-Juboory, J. Chem. Pharm. Res., 7, 1138 (2015).