Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Vibrational and Physical Properties on Tetramethyammonium Cadmium Bromide Ferroelectric Single Crystal
Corresponding Author(s) : N. Bhuvaneswari
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
Ferroelectric crystals of tetramethylammonium cadmium bromide (TMACB) has been grown by slow evaporation solution growth technique at room temperature. Single crystal X-ray diffraction analysis revealed the newness of the crystal structure belonging to the hexagonal crystal system with lattice parameters a = 9.257 Å, c = 6.9167 Å and a = b = 90º, g = 120º. The functional groups in the complex were identified using FT-IR and FT-Raman analyses. The thermal stability and decomposition details were studied through TG/DTA analyses. The grown crystal was subjected to surface morphology by SEM analysis and the optical properties was studied by UV-VIS-NIR analysis. From the photoluminescence studies, it was confirmed that the grown crystal has been green emission. The Vickers microhardness test conducted on the grown crystal suggests that the crystal has a relatively low mechanical strength. The dielectric constant and dielectric loss were calculated by varying the frequencies at room temperature. Dielectric studies of the grown crystal had been measured in the temperature range of 313 to 453 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Rajasekaran, P.M. Ushasree, R. Jayavel and P. Ramasamy, J. Cryst. Growth, 229, 563 (2001); https://doi.org/10.1016/S0022-0248(01)01229-5.
- R. Rajasekaran, R.M. Kumar, R. Jayavel and P. Ramasamy, J. Cryst. Growth, 252, 317 (2003); https://doi.org/10.1016/S0022-0248(02)02467-3.
- S. Bhattacharya, P. Dastidar and T.N. Guru Row, Chem. Mater., 6, 531 (1994); https://doi.org/10.1021/cm00040a031.
- L. Shivachev, K. Kossev, L.T. Dimowa, G. Yankov, T. Petrov, R.P. Nikolova and N. Petrova, J. Cryst. Growth, 376, 41 (2013); https://doi.org/10.1016/j.jcrysgro.2013.04.040.
- Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu and X. Zhao, CrystEngComm, 16, 7141 (2014); https://doi.org/10.1039/C4CE00869C.
- D. Isakov, E. de Matos Gomes, M.S. Belsley, V.H. Rodrigues and M.M. Ramalho Costa, CrystEngComm, 14, 3767 (2012); https://doi.org/10.1039/c2ce06652a.
- 7 S. Adhikari, S.K. Seth and T. Kar, CrystEngComm, 15, 7372 (2013); https://doi.org/10.1039/c3ce41079j.
- S. Brahadeeswaran, V. Venkataramanan, J.N. Sherwood and H.L. Bhat, J. Mater. Chem., 8, 613 (1998); https://doi.org/10.1039/a705138g.
- S. Mendiratta, C.-H. Lee, M. Usman and K.-L. Lu, Sci. Technol. Adv. Mater., 16, 054204 (2015); https://doi.org/10.1088/1468-6996/16/5/054204.
- Z. Fang, O.Y. Chen and C.Z. Zhao, Optics Laser Technol., 46, 103 (2013); https://doi.org/10.1016/j.optlastec.2012.05.041.
- S. Bhadauria, M. Das and S. Saxena, Arch. Phys. Res., 2, 36 (2011).
- M. Jazbinsek and P. Günter, eds.: A. Chen and E. Murphy, Organic Electro-optic Crystal Modulators, In: Broadband Optical Modulators: Science, Technology and Applications, CRC Press, Boca Raton, FL, p. 281(2011).
- L.F. Capitán-Vallvey and A.J. Palma, Anal. Chim. Acta, 696, 27 (2011); https://doi.org/10.1016/j.aca.2011.04.005.
- A.C. Fahrenbach, S.C. Warren, J.T. Incorvati,A.-J. Avestro, J.C. Barnes, J.F. Stoddart and B.A. Grzybowski, Adv. Mater., 25, 331 (2013); https://doi.org/10.1002/adma.201201912.
- S. Das, A. Nag, D. Goswami and P.K. Bharadwaj, J. Am. Chem. Soc., 128, 402 (2006); https://doi.org/10.1021/ja056771q.
- G. Aguirre-Zamalloa, M. Couzi, N.B. Chanh and B. Gallois, J. Phys. France, 51, 2135 (1990); https://doi.org/10.1051/jphys:0199000510190213500.
- G. Aguirre-Zamalloa, G. Madariaga, M. Couzi and T. Breczewski, Acta Crysta. B, 49, 691 (1993); https://doi.org/10.1107/S010876819300182X.
- S. Devashankar, L. Mariappan, P. Sureshkumar and M. Rathnakumari, J. Cryst. Growth, 311, 4207 (2009); https://doi.org/10.1016/j.jcrysgro.2009.06.056.
- R. Rajendran, T.H. Freeda, U.L. Kalasekar and R.N. Peruma, Adv. Mater. Phys. Chem., 1, 39 (2011); https://doi.org/10.4236/ampc.2011.12007.
- S. Kataki, S. Hazarika and D.C. Baruah, J. Environ. Manage., 196, 201 (2017); https://doi.org/10.1016/j.jenvman.2017.02.058.
- H. Yadav, N. Sinha and B. Kumar, Mater. Res. Bull., 64, 194 (2015); https://doi.org/10.1016/j.materresbull.2014.12.065.
- P. Pandi, G. Peramaiyan, G. Bhagavannarayanaa, R. Mohannkumar and R. Jayavel, Optik, 124, 5792 (2013); https://doi.org/10.1016/j.ijleo.2013.04.058.
- M. Magesh, G.A. Babu and P. Ramasamy, J. Cryst. Growth, 324, 201 (2011); https://doi.org/10.1016/j.jcrysgro.2011.03.057.
- K. Jagannathan, S. Kalainathan and T. Gnanasekaran, Mater. Lett., 61, 4485 (2007); https://doi.org/10.1016/j.matlet.2007.02.033.
- K.C. Kao, Electric Polarization and Relaxation, In: Dielectric Phenomena in Solids, Elsevier Academic Press, San Diego, USA (2004).
- I.S. Zheludev, Physics of Crystalline Dielectrics, I & II, Plenum Press, New York, London (1971).
- N. Goel, N. Sinha and B. Kumar, Opt. Mater., 35, 479 (2013); https://doi.org/10.1016/j.optmat.2012.10.020.
- K.A. Wishah, Y.A. Mahmud, M. Abdul-Gader, M. Al-Haj Abdallah and R.N. Ahmad-Bitar, Appl. Phys., A Mater. Sci. Process., 43, 61 (1987); https://doi.org/10.1007/BF00615207.
- S.J. Joshi, B.B. Parekh, K.D. Vohra and M.J. Joshi, Bull. Mater. Sci., 29, 307 (2006); https://doi.org/10.1007/BF02706501.
- S.S. Kirupavathy, S.S. Mary, P. Srinivasan, G. Bhagavannarayana, N. Vijayan and R. Gopalakrishnan, J. Cryst. Growth, 306, 102 (2007); https://doi.org/10.1016/j.jcrysgro.2007.03.036.
References
R. Rajasekaran, P.M. Ushasree, R. Jayavel and P. Ramasamy, J. Cryst. Growth, 229, 563 (2001); https://doi.org/10.1016/S0022-0248(01)01229-5.
R. Rajasekaran, R.M. Kumar, R. Jayavel and P. Ramasamy, J. Cryst. Growth, 252, 317 (2003); https://doi.org/10.1016/S0022-0248(02)02467-3.
S. Bhattacharya, P. Dastidar and T.N. Guru Row, Chem. Mater., 6, 531 (1994); https://doi.org/10.1021/cm00040a031.
L. Shivachev, K. Kossev, L.T. Dimowa, G. Yankov, T. Petrov, R.P. Nikolova and N. Petrova, J. Cryst. Growth, 376, 41 (2013); https://doi.org/10.1016/j.jcrysgro.2013.04.040.
Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu and X. Zhao, CrystEngComm, 16, 7141 (2014); https://doi.org/10.1039/C4CE00869C.
D. Isakov, E. de Matos Gomes, M.S. Belsley, V.H. Rodrigues and M.M. Ramalho Costa, CrystEngComm, 14, 3767 (2012); https://doi.org/10.1039/c2ce06652a.
7 S. Adhikari, S.K. Seth and T. Kar, CrystEngComm, 15, 7372 (2013); https://doi.org/10.1039/c3ce41079j.
S. Brahadeeswaran, V. Venkataramanan, J.N. Sherwood and H.L. Bhat, J. Mater. Chem., 8, 613 (1998); https://doi.org/10.1039/a705138g.
S. Mendiratta, C.-H. Lee, M. Usman and K.-L. Lu, Sci. Technol. Adv. Mater., 16, 054204 (2015); https://doi.org/10.1088/1468-6996/16/5/054204.
Z. Fang, O.Y. Chen and C.Z. Zhao, Optics Laser Technol., 46, 103 (2013); https://doi.org/10.1016/j.optlastec.2012.05.041.
S. Bhadauria, M. Das and S. Saxena, Arch. Phys. Res., 2, 36 (2011).
M. Jazbinsek and P. Günter, eds.: A. Chen and E. Murphy, Organic Electro-optic Crystal Modulators, In: Broadband Optical Modulators: Science, Technology and Applications, CRC Press, Boca Raton, FL, p. 281(2011).
L.F. Capitán-Vallvey and A.J. Palma, Anal. Chim. Acta, 696, 27 (2011); https://doi.org/10.1016/j.aca.2011.04.005.
A.C. Fahrenbach, S.C. Warren, J.T. Incorvati,A.-J. Avestro, J.C. Barnes, J.F. Stoddart and B.A. Grzybowski, Adv. Mater., 25, 331 (2013); https://doi.org/10.1002/adma.201201912.
S. Das, A. Nag, D. Goswami and P.K. Bharadwaj, J. Am. Chem. Soc., 128, 402 (2006); https://doi.org/10.1021/ja056771q.
G. Aguirre-Zamalloa, M. Couzi, N.B. Chanh and B. Gallois, J. Phys. France, 51, 2135 (1990); https://doi.org/10.1051/jphys:0199000510190213500.
G. Aguirre-Zamalloa, G. Madariaga, M. Couzi and T. Breczewski, Acta Crysta. B, 49, 691 (1993); https://doi.org/10.1107/S010876819300182X.
S. Devashankar, L. Mariappan, P. Sureshkumar and M. Rathnakumari, J. Cryst. Growth, 311, 4207 (2009); https://doi.org/10.1016/j.jcrysgro.2009.06.056.
R. Rajendran, T.H. Freeda, U.L. Kalasekar and R.N. Peruma, Adv. Mater. Phys. Chem., 1, 39 (2011); https://doi.org/10.4236/ampc.2011.12007.
S. Kataki, S. Hazarika and D.C. Baruah, J. Environ. Manage., 196, 201 (2017); https://doi.org/10.1016/j.jenvman.2017.02.058.
H. Yadav, N. Sinha and B. Kumar, Mater. Res. Bull., 64, 194 (2015); https://doi.org/10.1016/j.materresbull.2014.12.065.
P. Pandi, G. Peramaiyan, G. Bhagavannarayanaa, R. Mohannkumar and R. Jayavel, Optik, 124, 5792 (2013); https://doi.org/10.1016/j.ijleo.2013.04.058.
M. Magesh, G.A. Babu and P. Ramasamy, J. Cryst. Growth, 324, 201 (2011); https://doi.org/10.1016/j.jcrysgro.2011.03.057.
K. Jagannathan, S. Kalainathan and T. Gnanasekaran, Mater. Lett., 61, 4485 (2007); https://doi.org/10.1016/j.matlet.2007.02.033.
K.C. Kao, Electric Polarization and Relaxation, In: Dielectric Phenomena in Solids, Elsevier Academic Press, San Diego, USA (2004).
I.S. Zheludev, Physics of Crystalline Dielectrics, I & II, Plenum Press, New York, London (1971).
N. Goel, N. Sinha and B. Kumar, Opt. Mater., 35, 479 (2013); https://doi.org/10.1016/j.optmat.2012.10.020.
K.A. Wishah, Y.A. Mahmud, M. Abdul-Gader, M. Al-Haj Abdallah and R.N. Ahmad-Bitar, Appl. Phys., A Mater. Sci. Process., 43, 61 (1987); https://doi.org/10.1007/BF00615207.
S.J. Joshi, B.B. Parekh, K.D. Vohra and M.J. Joshi, Bull. Mater. Sci., 29, 307 (2006); https://doi.org/10.1007/BF02706501.
S.S. Kirupavathy, S.S. Mary, P. Srinivasan, G. Bhagavannarayana, N. Vijayan and R. Gopalakrishnan, J. Cryst. Growth, 306, 102 (2007); https://doi.org/10.1016/j.jcrysgro.2007.03.036.