Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics and Mechanism of Oxidation of Diclofenac Sodium by Keggin Type 12-Tungstocobalt(III) in Aqueous Medium
Corresponding Author(s) : M. Sanjana
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
The kinetics of electron transfer reaction of diclofenac sodium with 12-tungstocobaltate (III) complex has been studied spectrophotometrically over the range 2.0 × 10-3 £ [diclofenac sodium] £ 6.0 × 10-3 mol/L, 6.03 £ pH £ 8.0 and at 293 £ T £ 308 K in aqueous medium at constant ionic strength I (0.5 mol/L sodium perchlorate). The electron transfer reaction showed pseudo-first order dependence in [diclofenac sodium] and [12-tungstocobaltate(III)] and less than unit order in [OH–]T. The activation parameters calculated for the electron transfer reaction favoured the formation of a precursor complex between the reactants. The product is characterized by FTIR and NMR spectra and is found to be [2-(2,6-dichloro phenylamino)phenyl]methanol.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.P. Puttaswamy and J.P. Shubha, Am. Inst. Chem. Eng., 55, 3234 (2009); https://doi.org/10.1002/aic.11980.
- E.C. Ku, J.M. Wsvary and W.D. Cash, Biochem. Pharmacol., 24, 641 (1975); https://doi.org/10.1016/0006-2952(75)90186-0.
- P.A. Todd and E.M. Sorkin, Drugs, 35, 244 (2012); https://doi.org/10.2165/00003495-198835030-00004.
- N. Gostick, I.G.V. James, T.K. Khong, P. Roy, P.R. Shepherd and A.J. Miller, Curr. Med. Res. Opin., 12, 135 (1990); https://doi.org/10.1185/03007999009111494.
- H. Yu, E. Nie, J. Xu, S. Yan, W.J. Cooper and W. Song, Water Res., 47, 1909 (2013); https://doi.org/10.1016/j.watres.2013.01.016.
- L. Eberson, J. Am. Chem. Soc., 105, 3192 (1983); https://doi.org/10.1021/ja00348a039.
- A.L. Nolan, R.C. Burns and G.A. Lawrance, J. Chem. Soc. Trans., 3041 (1998); https://doi.org/10.1039/a804598d.
- M. Ali, S.K. Saha and P. Banerjee, J. Chem. Soc. Trans., 2305 (1991); https://doi.org/10.1039/dt9910002305.
- Z. Amjad, J.C. Brodovitch and A. McAuley, Can. J. Chem., 55, 3581 (1977); https://doi.org/10.1139/v77-502.
- A.G. Ayoko and A.M. Olatunji, Inorg. Chim. Acta, 80, 287 (1983); https://doi.org/10.1016/S0020-1693(00)91296-9.
- S.K. Saha, M.C. Ghosh and P. Banerjee, Int. J. Chem. Kinet., 20, 699 (1988); https://doi.org/10.1002/kin.550200904.
- P.K. Satpathy, G.C. Dash, S. Acharya and P. Mohanty, J. Indian Chem. Soc., 83, 891 (2006).
- G.A.Ayoko and M.A. Olatunji, Polyhydron, 2, 577 (1983); https://doi.org/10.1016/S0277-5387(00)81513-2.
- P. Kumari, A. Das, D.K. Baral, A.K. Pattanaik and P. Mohanty, E-J. Chem., 8, 1152 (2011); https://doi.org/10.1155/2011/341865.
- P.K. Satpathy, G.C. Dash and P. Mohanty, Indian J. Chem., 47A, 1199 (2008).
- P.G. Rasmussen and C.H. Brubaker Jr., Inorg. Chem., 3, 977 (1964); https://doi.org/10.1021/ic50017a011.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic compounds, John Wiley & Sons, New York, edn 3 (1977).
References
J.P. Puttaswamy and J.P. Shubha, Am. Inst. Chem. Eng., 55, 3234 (2009); https://doi.org/10.1002/aic.11980.
E.C. Ku, J.M. Wsvary and W.D. Cash, Biochem. Pharmacol., 24, 641 (1975); https://doi.org/10.1016/0006-2952(75)90186-0.
P.A. Todd and E.M. Sorkin, Drugs, 35, 244 (2012); https://doi.org/10.2165/00003495-198835030-00004.
N. Gostick, I.G.V. James, T.K. Khong, P. Roy, P.R. Shepherd and A.J. Miller, Curr. Med. Res. Opin., 12, 135 (1990); https://doi.org/10.1185/03007999009111494.
H. Yu, E. Nie, J. Xu, S. Yan, W.J. Cooper and W. Song, Water Res., 47, 1909 (2013); https://doi.org/10.1016/j.watres.2013.01.016.
L. Eberson, J. Am. Chem. Soc., 105, 3192 (1983); https://doi.org/10.1021/ja00348a039.
A.L. Nolan, R.C. Burns and G.A. Lawrance, J. Chem. Soc. Trans., 3041 (1998); https://doi.org/10.1039/a804598d.
M. Ali, S.K. Saha and P. Banerjee, J. Chem. Soc. Trans., 2305 (1991); https://doi.org/10.1039/dt9910002305.
Z. Amjad, J.C. Brodovitch and A. McAuley, Can. J. Chem., 55, 3581 (1977); https://doi.org/10.1139/v77-502.
A.G. Ayoko and A.M. Olatunji, Inorg. Chim. Acta, 80, 287 (1983); https://doi.org/10.1016/S0020-1693(00)91296-9.
S.K. Saha, M.C. Ghosh and P. Banerjee, Int. J. Chem. Kinet., 20, 699 (1988); https://doi.org/10.1002/kin.550200904.
P.K. Satpathy, G.C. Dash, S. Acharya and P. Mohanty, J. Indian Chem. Soc., 83, 891 (2006).
G.A.Ayoko and M.A. Olatunji, Polyhydron, 2, 577 (1983); https://doi.org/10.1016/S0277-5387(00)81513-2.
P. Kumari, A. Das, D.K. Baral, A.K. Pattanaik and P. Mohanty, E-J. Chem., 8, 1152 (2011); https://doi.org/10.1155/2011/341865.
P.K. Satpathy, G.C. Dash and P. Mohanty, Indian J. Chem., 47A, 1199 (2008).
P.G. Rasmussen and C.H. Brubaker Jr., Inorg. Chem., 3, 977 (1964); https://doi.org/10.1021/ic50017a011.
K. Nakamoto, Infrared and Raman Spectra of Inorganic compounds, John Wiley & Sons, New York, edn 3 (1977).