Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalyzed Anionic Dye Adsorption from Synthetic Wastewater by Using Polyaniline-CuCl2
Corresponding Author(s) : T. Vimala
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
The adsorption efficiency of CuCl2 doped polyaniline (PANI) as photocatalyst in bleaching of Eosin yellowish and Congo red have been investigated. The effect of different parameters like contact time, initial dye concentration, dosage of adsorbent, variation of % PANI-CuCl2 composite and pH on the rate of photocatalytic bleaching of dyes has been reported.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.S. Ozcan and A. Ozcan, J. Colloid Interface Sci., 276, 39 (2004); https://doi.org/10.1016/j.jcis.2004.03.043.
- P. Baskaralingam, M. Pulikesi, D. Elango, V. Ramamurthi and S. Sivanesan, J. Hazard. Mater., 128, 138 (2006); https://doi.org/10.1016/j.jhazmat.2005.07.049.
- R.J. Stephenson and S.J.B. Duff, Water Res., 30, 781 (1996); https://doi.org/10.1016/0043-1354(95)00213-8.
- Z. Khalili and B. Bonakdarpour, CLEAN-Soil, Air Water, 38, 942 (2010); https://doi.org/10.1002/clen.201000026.
- M. Trojanowicz, Mikrochim. Acta, 143, 75 (2003); https://doi.org/10.1007/s00604-003-0066-5.
- A.K. Bhattacharya, S.N. Mandal and S.K. Das,Chem. Eng. J., 123, 43 (2006); https://doi.org/10.1016/j.cej.2006.06.012.
- K. Kabra, R. Chaudhary and R.L. Sawhney, Ind. Eng. Chem. Res., 43, 7683 (2004); https://doi.org/10.1021/ie0498551.
- P. Xiong, Q. Chen, M. He, X. Sun and X. Wang, J. Mater. Chem., 22, 17485 (2012); https://doi.org/10.1039/c2jm31522j.
- R. Sivakumar, K. Ganesh and M. Karthikeyan, Int. J. Comp. Org. Trends, 8, 20 (2014); https://doi.org/10.14445/22492593/IJCOT-V8P304.
- J.R. Baseri, P.N. Palanisamy and P. Sivakumar, E-J. Chem., 9, 1266 (2012); https://doi.org/10.1155/2012/415234.
- M.R. Patil and J. Shrivastava, J. Mater. Environ. Sci., 6, 11 (2015).
- M.T.-L. Mihali, N. Pksu,A. Kellenberger and G. Lila,Int. J. Electrochem. Sci., 10, 7643 (2015).
- D. Bingol, S. Veli, S. Zor and U. Ozdemir, Synth. Met., 162, 1566 (2012); https://doi.org/10.1016/j.synthmet.2012.07.011.
- N. Yamamoto, T. Isobe, S. Matsushita and A. Nakajima, J. Ceram. Soc. Jpn., 120, 483 (2012); https://doi.org/10.2109/jcersj2.120.483.
- X. Xiong, X. Zhang and Y. Xu, RSC Adv., 6, 38169 (2016); https://doi.org/10.1039/C6RA04471A.
- D. Mahanta, G. Madras, S. Radhakrishnan and S. Patil, J. Phys. Chem. B, 112, 10153 (2008); https://doi.org/10.1021/jp803903x.
- A.-N. Chowdhury, S.R. Jesmeen and M.M. Hossain, Polym. Adv. Technol., 15, 633 (2004); https://doi.org/10.1002/pat.521.
- D. Mahanta, G. Madras, S. Radhakrishnan and S. Patil, J. Phys. Chem. B, 113, 2293 (2009); https://doi.org/10.1021/jp809796e.
- K.U. Savitha and H.G. Prabu, Mater. Chem. Phys., 130, 275 (2011); https://doi.org/10.1016/j.matchemphys.2011.06.037.
- H. Zhang, R.L. Zong and Y.F. Zhu, J. Phys. Chem. C, 113, 4605 (2009); https://doi.org/10.1021/jp810748u.
- H. Zhang and Y.F. Zhu, J. Phys. Chem. C, 114, 5822 (2010); https://doi.org/10.1021/jp910930t.
- M. Trchova and J. Stejskal, Pure Appl. Chem., 83, 1803 (2011); https://doi.org/10.1351/PAC-REP-10-02-01.
References
A.S. Ozcan and A. Ozcan, J. Colloid Interface Sci., 276, 39 (2004); https://doi.org/10.1016/j.jcis.2004.03.043.
P. Baskaralingam, M. Pulikesi, D. Elango, V. Ramamurthi and S. Sivanesan, J. Hazard. Mater., 128, 138 (2006); https://doi.org/10.1016/j.jhazmat.2005.07.049.
R.J. Stephenson and S.J.B. Duff, Water Res., 30, 781 (1996); https://doi.org/10.1016/0043-1354(95)00213-8.
Z. Khalili and B. Bonakdarpour, CLEAN-Soil, Air Water, 38, 942 (2010); https://doi.org/10.1002/clen.201000026.
M. Trojanowicz, Mikrochim. Acta, 143, 75 (2003); https://doi.org/10.1007/s00604-003-0066-5.
A.K. Bhattacharya, S.N. Mandal and S.K. Das,Chem. Eng. J., 123, 43 (2006); https://doi.org/10.1016/j.cej.2006.06.012.
K. Kabra, R. Chaudhary and R.L. Sawhney, Ind. Eng. Chem. Res., 43, 7683 (2004); https://doi.org/10.1021/ie0498551.
P. Xiong, Q. Chen, M. He, X. Sun and X. Wang, J. Mater. Chem., 22, 17485 (2012); https://doi.org/10.1039/c2jm31522j.
R. Sivakumar, K. Ganesh and M. Karthikeyan, Int. J. Comp. Org. Trends, 8, 20 (2014); https://doi.org/10.14445/22492593/IJCOT-V8P304.
J.R. Baseri, P.N. Palanisamy and P. Sivakumar, E-J. Chem., 9, 1266 (2012); https://doi.org/10.1155/2012/415234.
M.R. Patil and J. Shrivastava, J. Mater. Environ. Sci., 6, 11 (2015).
M.T.-L. Mihali, N. Pksu,A. Kellenberger and G. Lila,Int. J. Electrochem. Sci., 10, 7643 (2015).
D. Bingol, S. Veli, S. Zor and U. Ozdemir, Synth. Met., 162, 1566 (2012); https://doi.org/10.1016/j.synthmet.2012.07.011.
N. Yamamoto, T. Isobe, S. Matsushita and A. Nakajima, J. Ceram. Soc. Jpn., 120, 483 (2012); https://doi.org/10.2109/jcersj2.120.483.
X. Xiong, X. Zhang and Y. Xu, RSC Adv., 6, 38169 (2016); https://doi.org/10.1039/C6RA04471A.
D. Mahanta, G. Madras, S. Radhakrishnan and S. Patil, J. Phys. Chem. B, 112, 10153 (2008); https://doi.org/10.1021/jp803903x.
A.-N. Chowdhury, S.R. Jesmeen and M.M. Hossain, Polym. Adv. Technol., 15, 633 (2004); https://doi.org/10.1002/pat.521.
D. Mahanta, G. Madras, S. Radhakrishnan and S. Patil, J. Phys. Chem. B, 113, 2293 (2009); https://doi.org/10.1021/jp809796e.
K.U. Savitha and H.G. Prabu, Mater. Chem. Phys., 130, 275 (2011); https://doi.org/10.1016/j.matchemphys.2011.06.037.
H. Zhang, R.L. Zong and Y.F. Zhu, J. Phys. Chem. C, 113, 4605 (2009); https://doi.org/10.1021/jp810748u.
H. Zhang and Y.F. Zhu, J. Phys. Chem. C, 114, 5822 (2010); https://doi.org/10.1021/jp910930t.
M. Trchova and J. Stejskal, Pure Appl. Chem., 83, 1803 (2011); https://doi.org/10.1351/PAC-REP-10-02-01.