Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Energy Dependent Effective Atomic Number Calculation for Newly Developed 2-Acrylamido-2-methyl propane Sulfonic Acid Polymer Gel Dosimeter
Corresponding Author(s) : E.J.J. Samuel
Asian Journal of Chemistry,
Vol. 29 No. 6 (2017): Vol 29 Issue 6
Abstract
The aim of the study is to evaluate the water equivalency of the newly developed polymer gel dosimeter [2-acrylamido-2-methyl propane sulfonic acid (AMPS)] in terms of its effective atomic number (Zeff) and effective electron density (Neff). Auto-Zeff computer program was used to calculate the Zeff for photon energies ranging from 0.01 to 1000 MeV. 2-Acrylamido-2-methyl propane sulfonic acid polymer gel shows the good water equivalency with less than 1.56 % deviation from water over the energy range of 0.01 to 1000 MeV. Since 2-acrylamido-2-methyl propane sulfonic acid is less toxic and a very good water equivalent medium for photon energies from 0.01 to 1000 MeV it can be employed in clinically. The study also reveals that it is a good alternative gel for poly acrylamide gelatin tetrakis hydroxyl phosphonium chloride (PAGAT) in terms of its less toxicity and water equivalency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.J. Venning, B. Hill, S. Brindha, B.J. Healy and C. Baldock, Phys. Med. Biol., 50, 3875 (2005); https://doi.org/10.1088/0031-9155/50/16/015.
- A.J. Venning, K.N. Nitschke, P.J. Keall and C. Baldock, Med. Phys., 32, 1047 (2005); https://doi.org/10.1118/1.1881812.
- A. Hiroki, S. Yamashita, Y. Sato, N. Nagasawa and M. Taguchi, J. Phys. Conf. Ser., 444, 012028 (2013); https://doi.org/10.1088/1742-6596/444/1/012028.
- P. Sun, Y.C. Fu, J. Hu, N. Hao, W. Huang and B. Jiang, Radiat. Meas., 85, 116 (2016); https://doi.org/10.1016/j.radmeas.2015.12.037.
- T. Gorjiara, R. Hill, Z. Kuncic, S. Bosi, J.B. Davies and C. Baldock, Phys. Med. Biol., 56, 4685 (2011); https://doi.org/10.1088/0031-9155/56/15/004.
- M.J. Maryanski, R.J. Schulz, G.S. Ibbott, J.C. Gatenby, J. Xie, D. Horton and J.C. Gore, Phys. Med. Biol., 39, 1437 (1994); https://doi.org/10.1088/0031-9155/39/9/010.
- M.J. Maryanski, Y.Z. Zastavker and J.C. Gore, Phys. Med. Biol., 41, 2705 (1996); https://doi.org/10.1088/0031-9155/41/12/010.
- M. Hilts, C. Audet, C. Duzenli and A. Jirasek, Phys. Med. Biol., 45, 2559 (2000); https://doi.org/10.1088/0031-9155/45/9/309.
- E.J.J. Samuel, P. Sathiyaraj, T. Deena and D.S. Kumar, J. Phys. Conf. Ser., 573, 012065 (2015); https://doi.org/10.1088/1742-6596/573/1/012065.
- S. Khoei, J.V. Trapp and C.M. Langton, Phys. Med. Biol., 59, N129 (2014); https://doi.org/10.1088/0031-9155/59/15/N129.
- T.K. Kumar and K.V. Reddy, Radiat. Phys. Chem., 50, 545 (1997); https://doi.org/10.1016/S0969-806X(97)00089-3.
- M. Kurudirek, Radiat. Phys. Chem., 102, 139 (2014); https://doi.org/10.1016/j.radphyschem.2014.04.033.
- P. Sellakumar, E. James Jebaseelan Samuel and S.S. Supe, Radiat. Phys. Chem., 76, 1108 (2007); https://doi.org/10.1016/j.radphyschem.2007.03.003.
- T. Gorjiara, R. Hill, Z. Kuncic, J. Adamovics, S. Bosi, J.H. Kim and C. Baldock, Med. Phys., 38, 2265 (2011); https://doi.org/10.1118/1.3561509.
- S.M. Abtahi, Phys. Med., 32, 1156 (2016); https://doi.org/10.1016/j.ejmp.2016.08.008.
- S.R. Manohara, S.M. Hanagodimath and L. Gerward, Phys. Med. Biol., 53, N377 (2008); https://doi.org/10.1088/0031-9155/53/20/N01.
- M.L. Taylor, R.L. Smith, F. Dossing and R.D. Franich, Med. Phys., 39, 1769 (2012); https://doi.org/10.1118/1.3689810.
References
A.J. Venning, B. Hill, S. Brindha, B.J. Healy and C. Baldock, Phys. Med. Biol., 50, 3875 (2005); https://doi.org/10.1088/0031-9155/50/16/015.
A.J. Venning, K.N. Nitschke, P.J. Keall and C. Baldock, Med. Phys., 32, 1047 (2005); https://doi.org/10.1118/1.1881812.
A. Hiroki, S. Yamashita, Y. Sato, N. Nagasawa and M. Taguchi, J. Phys. Conf. Ser., 444, 012028 (2013); https://doi.org/10.1088/1742-6596/444/1/012028.
P. Sun, Y.C. Fu, J. Hu, N. Hao, W. Huang and B. Jiang, Radiat. Meas., 85, 116 (2016); https://doi.org/10.1016/j.radmeas.2015.12.037.
T. Gorjiara, R. Hill, Z. Kuncic, S. Bosi, J.B. Davies and C. Baldock, Phys. Med. Biol., 56, 4685 (2011); https://doi.org/10.1088/0031-9155/56/15/004.
M.J. Maryanski, R.J. Schulz, G.S. Ibbott, J.C. Gatenby, J. Xie, D. Horton and J.C. Gore, Phys. Med. Biol., 39, 1437 (1994); https://doi.org/10.1088/0031-9155/39/9/010.
M.J. Maryanski, Y.Z. Zastavker and J.C. Gore, Phys. Med. Biol., 41, 2705 (1996); https://doi.org/10.1088/0031-9155/41/12/010.
M. Hilts, C. Audet, C. Duzenli and A. Jirasek, Phys. Med. Biol., 45, 2559 (2000); https://doi.org/10.1088/0031-9155/45/9/309.
E.J.J. Samuel, P. Sathiyaraj, T. Deena and D.S. Kumar, J. Phys. Conf. Ser., 573, 012065 (2015); https://doi.org/10.1088/1742-6596/573/1/012065.
S. Khoei, J.V. Trapp and C.M. Langton, Phys. Med. Biol., 59, N129 (2014); https://doi.org/10.1088/0031-9155/59/15/N129.
T.K. Kumar and K.V. Reddy, Radiat. Phys. Chem., 50, 545 (1997); https://doi.org/10.1016/S0969-806X(97)00089-3.
M. Kurudirek, Radiat. Phys. Chem., 102, 139 (2014); https://doi.org/10.1016/j.radphyschem.2014.04.033.
P. Sellakumar, E. James Jebaseelan Samuel and S.S. Supe, Radiat. Phys. Chem., 76, 1108 (2007); https://doi.org/10.1016/j.radphyschem.2007.03.003.
T. Gorjiara, R. Hill, Z. Kuncic, J. Adamovics, S. Bosi, J.H. Kim and C. Baldock, Med. Phys., 38, 2265 (2011); https://doi.org/10.1118/1.3561509.
S.M. Abtahi, Phys. Med., 32, 1156 (2016); https://doi.org/10.1016/j.ejmp.2016.08.008.
S.R. Manohara, S.M. Hanagodimath and L. Gerward, Phys. Med. Biol., 53, N377 (2008); https://doi.org/10.1088/0031-9155/53/20/N01.
M.L. Taylor, R.L. Smith, F. Dossing and R.D. Franich, Med. Phys., 39, 1769 (2012); https://doi.org/10.1118/1.3689810.