Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Antiproliferative Activity of Some Dihydro-1H-furo[2,3-c]pyrazole-Flavone Hybrids
Corresponding Author(s) : Venkata Swamy Tangeti
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
A new series of dihydro-1H-furo[2,3-c]pyrazole-flavone hybrids were synthesized from one-pot four-component reaction of b-keto ester (1), hydrazine (2), 7-hydroxy 8-formyl flavones (3), pyridiniumylide (4) in presence of NEt3 as catalyst under ethanol reflux conditions and their antiproliferative properties were evaluated against human cancer cell lines, namely, laryngeal carcinoma (Hep2), lung adenocarcinoma (A549) and cervical cancer (HeLa). The best among them, furo[2,3-c]pyrazole-flavone with C4'-methoxy substitution was selected for further structure activity relationship (SAR) studies. Among the derivatives, (4S,5S)-ethyl 4-(7-hydroxy-5-methoxy-4-oxo-2-(2,4,6-trimethoxyphenyl)-4H-chromen-8-yl)-3-methyl-4,5-dihydro-1H-furo[2,3-c]pyrazole-5-carboxylate (8r) showed most potent cytotoxic activity against all three cancer cell lines. Toxicity studies revealed that the dihydro-1H-furo[2,3-c]pyrazole-flavones are specifically target the cancer cell lines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Andersen and K.R. Markham, Flavonoids: Chemistry, Biochemistry and Applications, CRC Press, Boca Raton, edn 2 (2006).
- B.H. Havsteen, Pharmacol. Ther., 96, 67 (2002); https://doi.org/10.1016/S0163-7258(02)00298-X.
- A.J. Lamb, Int. J. Antimicrob. Agents, 27, 443 (2006).
- P. Da Re, L. Sagramora, V. Mancini, P. Valenti and L. Cima, J. Med. Chem., 13, 527 (1970); https://doi.org/10.1021/jm00297a042.
- V.P. Kamboj, S. Ray and B.N. Dhawan, Drugs Today, 28, 227 (1992).
- P. Da Re, L. Sagramora, V. Mancini, P. Valenti and L. Cima, Tetrahedron, 61, 9291 (2005); https://doi.org/10.1016/j.tet.2005.07.062.
- S. Burda and W. Oleszek, J. Agric. Food Chem., 49, 2774 (2001); https://doi.org/10.1021/jf001413m.
- M. Foti, M. Piattelli, M.T. Baratta and G. Ruberto, J. Agric. Food Chem., 44, 497 (1996); https://doi.org/10.1021/jf950378u.
- M. Nakashima, Annual Drug Data Rep., 18, 821 (1996).
- R.K.Y. Zee-Cheng and C.C. Cheng, Drugs Future, 12, 123 (1987); https://doi.org/10.1358/dof.1987.012.02.55392.
- G. Lewin, N.B. Shridhar, G. Aubert, S. Thoret, J. Dubois and T. Cresteil, Bioorg. Med. Chem. Lett., 19, 186 (2011); https://doi.org/10.1016/j.bmc.2010.11.035.
- R. Tundis, B. Deguin, M.R. Loizzo, M. Bonesi, G.A. Statti, F. Tillequin and F. Menichini, Bioorg. Med. Chem. Lett., 15, 4757 (2005); https://doi.org/10.1016/j.bmcl.2005.07.029.
- T. Itoh, K. Ohguchi, M. Iinuma, Y. Nozawa and Y. Akao, Bioorg. Med. Chem. Lett., 16, 7592 (2008); https://doi.org/10.1016/j.bmc.2008.07.018.
- M. Cabrera, M. Simoens, G. Falchi, M.L. Lavaggi, O.E. Piro, E.E. Castellano, A. Vidal, A. Azqueta, A. Monge, A.L. de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto and M. González, Bioorg. Med. Chem. Lett., 15, 3356 (2007); https://doi.org/10.1016/j.bmc.2007.03.031.
- N.J. Lawrence, D. Rennison, A.T. McGown and J.A. Hadfield, Bioorg. Med. Chem. Lett., 13, 3759 (2003); https://doi.org/10.1016/j.bmcl.2003.07.003.
- J. Quintin, D. Buisson, S. Thoret, T. Cresteil and G. Lewin, Bioorg. Med. Chem. Lett., 19, 3502 (2009); https://doi.org/10.1016/j.bmcl.2009.05.008.
- R.A. Aitken, M.C. Bibby, J.A. Double, R.M. Phillips and S.K. Sharma, Bioorg. Med. Chem. Lett., 4, 2313 (1994); https://doi.org/10.1016/0960-894X(94)85031-3.
- C. Pouget, F. Lauthier, A. Simon, C. Fagnere, J.-P. Basly, C. Delage and A.-J. Chulia, Bioorg. Med. Chem. Lett., 11, 3095 (2001); https://doi.org/10.1016/S0960-894X(01)00617-5.
- M. Cárdenas, M. Marder, V.C. Blank and L.P. Roguin, Bioorg. Med. Chem. Lett., 14, 2966 (2006); https://doi.org/10.1016/j.bmc.2005.12.021.
- A. Pick, H. Müller, R. Mayer, B. Haenisch, I.K. Pajeva, M. Weigt, H. Bönisch, C.E. Müller and M. Wiese, Bioorg. Med. Chem. Lett., 19, 2090 (2011); https://doi.org/10.1016/j.bmc.2010.12.043.
- V.C. Blank, C. Poli, M. Marder and L.P. Roguin, Bioorg. Med. Chem. Lett., 14, 133 (2004); https://doi.org/10.1016/j.bmcl.2003.10.029.
- Z.-H. Shi, N.-G. Li, Y.-P. Tang, Q.-P. Shi, W. Zhang, P.-X. Zhang, Z.-X. Dong, W. Li, X. Zhang, H.-A. Fu and J.-A. Duan, Bioorg. Med. Chem. Lett., 24, 4424 (2014); https://doi.org/10.1016/j.bmcl.2014.08.006.
- J.A. Beutler, E. Hamel, A.J. Vlietinck, A. Haemers, P. Rajan, J.N. Roitman, J.H. Cardellina and M.R. Boyd, Med. Chem. (N.Y.), 41, 2333 (1998); https://doi.org/10.1021/jm970842h.
- A. Maiti, M. Cuendet, T. Kondratyuk, V.L. Croy, J.M. Pezzuto and M. Cushman, J. Med. Chem., 50, 350 (2007); https://doi.org/10.1021/jm060915+.
- M.F.G. Stevens, C.J. McCall, P. Lelievald, P. Alexander, A. Richter and D.E. Davies, J. Med. Chem., 37, 1689 (1994); https://doi.org/10.1021/jm00037a020.
- J.A. Beutler, E. Hamel, A.J. Vlietinck, A. Haemers, P. Rajan, J.N. Roitman, J.H. Cardellina and M.R. Boyd, J. Med. Chem., 41, 2333 (1998); https://doi.org/10.1021/jm970842h.
- N. Fang, M. Leidig and T. Mabry, J. Photochem., 25, 927 (1986); https://doi.org/10.1016/0031-9422(86)80029-2.
- V.S. Tangeti, G.V. Siva Prasad, J. Panda and K.R. Varma, Synth. Commun., 46, 878 (2016); https://doi.org/10.1080/00397911.2016.1174781.
- V.S. Tangeti, R. Varma K, G.V. Siva Prasad and K.V.V.V. Satyanarayana, Synth. Commun., 46, 613 (2016); https://doi.org/10.1080/00397911.2016.1159696.
- H.S.P. Rao and S.T. Venkata, Lett. Org. Chem., 10, 307 (2013); https://doi.org/10.2174/1570178611310040014.
- H.S.P. Rao and V.S. Tangeti, Proc. Indian Nat. Sci. Acad. Part A Phys. Sci., 85, 41 (2015); https://doi.org/10.1007/s40010-014-0179-8.
- H.S.P. Rao and V.S. Tangeti, J. Chem. Sci., 125, 777 (2013); https://doi.org/10.1007/s12039-013-0458-y.
- H.S.P. Rao, V.S. Tangeti and L.N. Adigopula, Res. Chem. Intermed., 42, 7285 (2016); https://doi.org/10.1007/s11164-016-2536-5.
- T. Schläger, D. Schepmann, E.-U. Würthwein and B. Wünsch, Bioorg. Med. Chem., 16, 2992 (2008); https://doi.org/10.1016/j.bmc.2007.12.045.
- H.V. Chavan, B.P. Bandgar, L.K. Adsul, V.D. Dhakane, P.S. Bhale, V.N. Thakare and V. Masand, Bioorg. Med. Chem. Lett., 23, 1315 (2013); https://doi.org/10.1016/j.bmcl.2012.12.094.
- H.S.P. Rao and V.S. Tangeti, Lett. Org. Chem., 9, 218 (2012); https://doi.org/10.2174/157017812800167501.
- J.B. Harborne and H. Baxter, The Handbook of Natural Flavonoids, John Wiley & Sons, Chichester, UK (1999).
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
References
M. Andersen and K.R. Markham, Flavonoids: Chemistry, Biochemistry and Applications, CRC Press, Boca Raton, edn 2 (2006).
B.H. Havsteen, Pharmacol. Ther., 96, 67 (2002); https://doi.org/10.1016/S0163-7258(02)00298-X.
A.J. Lamb, Int. J. Antimicrob. Agents, 27, 443 (2006).
P. Da Re, L. Sagramora, V. Mancini, P. Valenti and L. Cima, J. Med. Chem., 13, 527 (1970); https://doi.org/10.1021/jm00297a042.
V.P. Kamboj, S. Ray and B.N. Dhawan, Drugs Today, 28, 227 (1992).
P. Da Re, L. Sagramora, V. Mancini, P. Valenti and L. Cima, Tetrahedron, 61, 9291 (2005); https://doi.org/10.1016/j.tet.2005.07.062.
S. Burda and W. Oleszek, J. Agric. Food Chem., 49, 2774 (2001); https://doi.org/10.1021/jf001413m.
M. Foti, M. Piattelli, M.T. Baratta and G. Ruberto, J. Agric. Food Chem., 44, 497 (1996); https://doi.org/10.1021/jf950378u.
M. Nakashima, Annual Drug Data Rep., 18, 821 (1996).
R.K.Y. Zee-Cheng and C.C. Cheng, Drugs Future, 12, 123 (1987); https://doi.org/10.1358/dof.1987.012.02.55392.
G. Lewin, N.B. Shridhar, G. Aubert, S. Thoret, J. Dubois and T. Cresteil, Bioorg. Med. Chem. Lett., 19, 186 (2011); https://doi.org/10.1016/j.bmc.2010.11.035.
R. Tundis, B. Deguin, M.R. Loizzo, M. Bonesi, G.A. Statti, F. Tillequin and F. Menichini, Bioorg. Med. Chem. Lett., 15, 4757 (2005); https://doi.org/10.1016/j.bmcl.2005.07.029.
T. Itoh, K. Ohguchi, M. Iinuma, Y. Nozawa and Y. Akao, Bioorg. Med. Chem. Lett., 16, 7592 (2008); https://doi.org/10.1016/j.bmc.2008.07.018.
M. Cabrera, M. Simoens, G. Falchi, M.L. Lavaggi, O.E. Piro, E.E. Castellano, A. Vidal, A. Azqueta, A. Monge, A.L. de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto and M. González, Bioorg. Med. Chem. Lett., 15, 3356 (2007); https://doi.org/10.1016/j.bmc.2007.03.031.
N.J. Lawrence, D. Rennison, A.T. McGown and J.A. Hadfield, Bioorg. Med. Chem. Lett., 13, 3759 (2003); https://doi.org/10.1016/j.bmcl.2003.07.003.
J. Quintin, D. Buisson, S. Thoret, T. Cresteil and G. Lewin, Bioorg. Med. Chem. Lett., 19, 3502 (2009); https://doi.org/10.1016/j.bmcl.2009.05.008.
R.A. Aitken, M.C. Bibby, J.A. Double, R.M. Phillips and S.K. Sharma, Bioorg. Med. Chem. Lett., 4, 2313 (1994); https://doi.org/10.1016/0960-894X(94)85031-3.
C. Pouget, F. Lauthier, A. Simon, C. Fagnere, J.-P. Basly, C. Delage and A.-J. Chulia, Bioorg. Med. Chem. Lett., 11, 3095 (2001); https://doi.org/10.1016/S0960-894X(01)00617-5.
M. Cárdenas, M. Marder, V.C. Blank and L.P. Roguin, Bioorg. Med. Chem. Lett., 14, 2966 (2006); https://doi.org/10.1016/j.bmc.2005.12.021.
A. Pick, H. Müller, R. Mayer, B. Haenisch, I.K. Pajeva, M. Weigt, H. Bönisch, C.E. Müller and M. Wiese, Bioorg. Med. Chem. Lett., 19, 2090 (2011); https://doi.org/10.1016/j.bmc.2010.12.043.
V.C. Blank, C. Poli, M. Marder and L.P. Roguin, Bioorg. Med. Chem. Lett., 14, 133 (2004); https://doi.org/10.1016/j.bmcl.2003.10.029.
Z.-H. Shi, N.-G. Li, Y.-P. Tang, Q.-P. Shi, W. Zhang, P.-X. Zhang, Z.-X. Dong, W. Li, X. Zhang, H.-A. Fu and J.-A. Duan, Bioorg. Med. Chem. Lett., 24, 4424 (2014); https://doi.org/10.1016/j.bmcl.2014.08.006.
J.A. Beutler, E. Hamel, A.J. Vlietinck, A. Haemers, P. Rajan, J.N. Roitman, J.H. Cardellina and M.R. Boyd, Med. Chem. (N.Y.), 41, 2333 (1998); https://doi.org/10.1021/jm970842h.
A. Maiti, M. Cuendet, T. Kondratyuk, V.L. Croy, J.M. Pezzuto and M. Cushman, J. Med. Chem., 50, 350 (2007); https://doi.org/10.1021/jm060915+.
M.F.G. Stevens, C.J. McCall, P. Lelievald, P. Alexander, A. Richter and D.E. Davies, J. Med. Chem., 37, 1689 (1994); https://doi.org/10.1021/jm00037a020.
J.A. Beutler, E. Hamel, A.J. Vlietinck, A. Haemers, P. Rajan, J.N. Roitman, J.H. Cardellina and M.R. Boyd, J. Med. Chem., 41, 2333 (1998); https://doi.org/10.1021/jm970842h.
N. Fang, M. Leidig and T. Mabry, J. Photochem., 25, 927 (1986); https://doi.org/10.1016/0031-9422(86)80029-2.
V.S. Tangeti, G.V. Siva Prasad, J. Panda and K.R. Varma, Synth. Commun., 46, 878 (2016); https://doi.org/10.1080/00397911.2016.1174781.
V.S. Tangeti, R. Varma K, G.V. Siva Prasad and K.V.V.V. Satyanarayana, Synth. Commun., 46, 613 (2016); https://doi.org/10.1080/00397911.2016.1159696.
H.S.P. Rao and S.T. Venkata, Lett. Org. Chem., 10, 307 (2013); https://doi.org/10.2174/1570178611310040014.
H.S.P. Rao and V.S. Tangeti, Proc. Indian Nat. Sci. Acad. Part A Phys. Sci., 85, 41 (2015); https://doi.org/10.1007/s40010-014-0179-8.
H.S.P. Rao and V.S. Tangeti, J. Chem. Sci., 125, 777 (2013); https://doi.org/10.1007/s12039-013-0458-y.
H.S.P. Rao, V.S. Tangeti and L.N. Adigopula, Res. Chem. Intermed., 42, 7285 (2016); https://doi.org/10.1007/s11164-016-2536-5.
T. Schläger, D. Schepmann, E.-U. Würthwein and B. Wünsch, Bioorg. Med. Chem., 16, 2992 (2008); https://doi.org/10.1016/j.bmc.2007.12.045.
H.V. Chavan, B.P. Bandgar, L.K. Adsul, V.D. Dhakane, P.S. Bhale, V.N. Thakare and V. Masand, Bioorg. Med. Chem. Lett., 23, 1315 (2013); https://doi.org/10.1016/j.bmcl.2012.12.094.
H.S.P. Rao and V.S. Tangeti, Lett. Org. Chem., 9, 218 (2012); https://doi.org/10.2174/157017812800167501.
J.B. Harborne and H. Baxter, The Handbook of Natural Flavonoids, John Wiley & Sons, Chichester, UK (1999).
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.