Main Article Content

Abstract

In present study, thermoplasmonic characteristics of dysprosium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and dysprosium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross-sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in dysprosium nanoparticles by solving heat equation. The results show that the dysprosium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Keywords

Dysprosium nanoparticles 3D Finite element method Optothermal Thermoplasmonic Synchrotron radiation Beam energy

Article Details

References

  1. P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish and Z.M. Wang, Design and Fabrication of Silicon Nanowires Towards Efficient Solar Cells, Nano Today, 11, 704 (2016); https://doi.org/10.1016/j.nantod.2016.10.001.
  2. S. Sandhu and S. Fan, Current–Voltage Enhancement of a Single Coaxial Nanowire Solar Cell, ACS Photonics, 2, 1698 (2015); https://doi.org/10.1021/acsphotonics.5b00236.
  3. D. van Dam, N.J.J. Van Hoof, Y. Cui, P.J. van Veldhoven, E.P.A.M. Bakkers, J. Gómez Rivas and J.E.M. Haverkort, High-Efficiency Nano wire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers, ACS Nano, 10, 11414 (2016); https://doi.org/10.1021/acsnano.6b06874.
  4. S. Luo, W.B. Yu, Y. He and G. Ouyang, Size-Dependent Optical Absorption Modulation of Si/Ge And Ge/Si Core/Shell Nanowires with Different Cross-Sectional Geometries, Nanotechnology, 26, 085702 (2015); https://doi.org/10.1088/0957-4484/26/8/085702.
  5. P. Yu, Y. Yao, J. Wu, X. Niu, A.L. Rogach and Z. Wang, Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells, Sci. Rep., 7, 7696 (2017); https://doi.org/10.1038/s41598-017-08077-9.
  6. A.M. Gouda, N.K. Allam and M.A. Swillam, Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications, RSC Adv., 7, 26974 (2017); https://doi.org/10.1039/C7RA03568C.
  7. H.M. Branz, V.E. Yost, S. Ward, K.M. Jones, B. To and P. Stradins, Nanostructured Black Silicon and the Optical Reflectance of Graded Density Surfaces, Appl. Phys. Lett., 94, 231121 (2009); https://doi.org/10.1063/1.3152244.
  8. B. Fazio, P. Artoni, M. Antonía Iatí, C. D’Andrea, M.J. Lo Faro, S. Del Sorbo, S. Pirotta, P. Giuseppe Gucciardi, P. Musumeci, C. Salvatore Vasi, R. Saija, M. Galli, F. Priolo and A. Irrera, Strongly Enhanced Light Trapping in a Two-dimensional Silicon Nanowire Random Fractal Array, Light Sci. Appl., 5, e16062 (2016); https://doi.org/10.1038/lsa.2016.62.
  9. M.-D. Ko, T. Rim, K. Kim, M. Meyyappan and C.-K. Baek, High Efficiency Silicon Solar Cell Based on Asymmetric Nanowire, Sci. Rep., 5, 11646 (2015); https://doi.org/10.1038/srep11646.
  10. J. Oh, H.C. Yuan and H.M. Branz, An 18.2%-Efficient Black-silicon Solar Cell Achieved Through Control of Carrier Recombination in Nanostructures, Nat. Nanotechnol., 7, 743 (2012); https://doi.org/10.1038/nnano.2012.166.
  11. H. Lin, F. Xiu, M. Fang, S. Yip, H.Y. Cheung, F. Wang, N. Han, K.S. Chan, C.Y. Wong and J.C. Ho, Rational Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband and Omnidirectional Light Harvesting, ACS Nano, 8, 3752 (2014); https://doi.org/10.1021/nn500418x.
  12. E. Garnett and P. Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Lett., 10, 1082 (2010); https://doi.org/10.1021/nl100161z.
  13. S. Misra, L. Yu, M. Foldyna and I.R. i Cabarrocas, High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires, Sol. Energy Mater. Sol. Cells, 118, 90 (2013); https://doi.org/10.1016/j.solmat.2013.07.036.
  14. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis and H.A. Atwater, Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications, Nat. Mater., 9, 239 (2010); https://doi.org/10.1038/nmat2635.
  15. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, Coaxial Silicon Nanowires as Solar Cells and Nanoelec tronic Power Sources, Nature, 449, 885 (2007); https://doi.org/10.1038/nature06181.
  16. S.A. Razek, M.A. Swillam and N.K. Allam, Vertically Aligned Crystalline Silicon Nanowires with Controlled Diameters for Energy Conversion Applications: Experimental and Theoretical Insights, J. Appl. Phys., 115, 194305 (2014); https://doi.org/10.1063/1.4876477.
  17. N. Dhindsa, J. Walia and S.S. Saini, A Platform for Colorful Solar Cells with Enhanced Absorption, Nanotechnology, 27, 495203 (2016); https://doi.org/10.1088/0957-4484/27/49/495203.
  18. N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W.S. Wong and S.S. Saini, Adjustable Optical Response of Amorphous Silicon Nanowires Integrated with Thin Films, Nanotechnology, 27, 145703 (2016); https://doi.org/10.1088/0957-4484/27/14/145703.
  19. J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan and Y. Cui, Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Lett., 9, 279 (2009); https://doi.org/10.1021/nl802886y.
  20. D. Klinger, E. £usakowska and D. Zymierska, Nano-Structure Formed by Nanosecond Laser Annealing on Amorphous Si Surface, Mater. Sci. Semicond. Process., 9, 323 (2006); https://doi.org/10.1016/j.mssp.2006.01.027.
  21. P. Kumar, M.G. Krishna and A. Bhattacharya, Excimer Laser Induced Nanostructuring of Silicon Surfaces, J. Nanosci. Nanotechnol., 9, 3224 (2009); https://doi.org/10.1166/jnn.2009.207.
  22. P. Kumar, Surface Modulation of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold, Appl. Phys., A Mater. Sci. Process., 99, 245 (2010); https://doi.org/10.1007/s00339-009-5510-x.
  23. A.A.D.T. Adikaari and S.R.P. Silva, Thickness Dependence of Properties of Excimer Laser Crystallized Nano-Polycrystalline Silicon, J. Appl. Phys., 97, 114305 (2005); https://doi.org/10.1063/1.1898444.
  24. A.A.D.T. Adikaari, D.M.N.M. Dissanayake, R.A. Hatton and S.R.P. Silva, Efficient Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells, Appl. Phys. Lett., 90, 203514 (2007); https://doi.org/10.1063/1.2739365.
  25. A.A.D.T. Adikaari and S.R.P. Silva, Excimer Laser Crystallization and Nanostructuring of Amorphous Silicon for Photovoltaic Applications, Nano, 3, 117 (2008); https://doi.org/10.1142/S1793292008000915.
  26. Y.F. Tang, S.R.P. Silva, B.O. Boskovic, J.M. Shannon and M.J. Rose, Electron Field Emission from Excimer Laser Crystallized Amorphous Silicon, Appl. Phys. Lett., 80, 4154 (2002); https://doi.org/10.1063/1.1482141.
  27. S. Jin, S. Hong, M. Mativenga, B. Kim, H.H. Shin, J.K. Park, T.W. Kim and J. Jang, Low Temperature Polycrystalline Silicon with Single Orientation on Glass by Blue Laser Annealing, Thin Solid Films, 616, 838 (2016); https://doi.org/10.1016/j.tsf.2016.10.026.
  28. Y. Jiang, X. Gong, R. Qin, H. Liu, C. Xia and H. Ma, Efficiency Enhancement Mechanism for Poly(3,4-ethylenedioxythiophene): Poly (styrenesulfonate)/Silicon Nanowires Hybrid Solar Cells using Alkali Treatment, Nanoscale Res. Lett., 11, 267 (2016); https://doi.org/10.1186/s11671-016-1450-5.
  29. T.T.T. N’Guyen, H.T.T. Duong, J. Basuki, V. Montembault, S. Pascual, C. Guibert, J. Fresnais, C. Boyer, M.R. Whittaker, T.P. Davis and L. Fontaine, Functional Iron Oxide Magnetic Nanoparticles with Hyperthermia-Induced Drug Release Ability by Using a Combination of Orthogonal Click Reactions, Angew. Chem. Int. Ed., 52, 14152 (2013); https://doi.org/10.1002/anie.201306724.
  30. Z. Xu, Y. Zhao, X. Wang and T. Lin, A Thermally Healable Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposite Based on Diels–Alder Chemistry, Chem. Commun., 49, 6755 (2013); https://doi.org/10.1039/c3cc43432j.
  31. M. Torres-Lugo and C. Rinaldi, Thermal Potentiation of Chemotherapy by Magnetic nanoparticles, Nanomedicine, 8, 1689 (2013); https://doi.org/10.2217/nnm.13.146.
  32. S. Schäfer and G. Kickelbick, Self-healing Polymer Nanocomposites Based on Diels-alder Reactions with Silica Nanoparticles: The Role of the Polymer Matrix, Polymer, 69, 357 (2015); https://doi.org/10.1016/j.polymer.2015.03.017.
  33. B.A. Larsen, K.M. Hurst, W.R. Ashurst, N.J. Serkova and C.R. Stoldt, Mono and Dialkoxysilane Surface Modification of Superparamagnetic Iron Oxide Nanoparticles for Application as Magnetic Resonance Imaging Contrast Agents, J. Mater. Res., 27, 1846 (2012); https://doi.org/10.1557/jmr.2012.160.
  34. K. Davis, B. Qi, M. Witmer, C.L. Kitchens, B.A. Powell and O.T. Mefford, Quantitative Measurement of Ligand Exchange on Iron Oxides via Radiolabeled Oleic Acid, Langmuir, 30, 10918 (2014); https://doi.org/10.1021/la502204g.
  35. R. Sauer, P. Froimowicz, K. Scholler, J.M. Cramer, S. Ritz, V. Mailander and K. Landfester, Design, Synthesis and Miniemulsion Polymerization of New Phosphonate Surfmers and Application Studies of the Resulting Nanoparticles as Model Systems for Biomimetic Mineralization and Cellular Uptake, Chem. Eur. J., 18, 5201 (2012); https://doi.org/10.1002/chem.201103256.
  36. V. Patsula, L. Kosinova, M. Lovric, L. Ferhatovic Hamzic, M. Rabyk, R. Konefal, A. Paruzel, M. Slouf, V. Herynek, S. Gajovic and D. Horak, Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging, ACS Appl. Mater. Interfaces, 8, 7238 (2016); https://doi.org/10.1021/acsami.5b12720.
  37. N. Pothayee, S. Balasubramaniam, R.M. Davis, J.S. Riffle, M.R.J. Carroll, R.C. Woodward and T.G. St. Pierre, Synthesis of 'Ready-To Adsorb' Polymeric Nanoshells for Magnetic Iron Oxide Nanoparticles via Atom Transfer Radical Polymerization, Polymer, 52, 1356 (2011); https://doi.org/10.1016/j.polymer.2011.01.047.
  38. L. Breucker, K. Landfester and A. Taden, Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties, ACS Appl. Mater. Interfaces, 7, 24641 (2015); https://doi.org/10.1021/acsami.5b06903.
  39. R.C. Longo, K. Cho, W.G. Schmidt, Y.J. Chabal and P. Thissen, Monolayer Doping via Phosphonic Acid Grafting on Silicon: Micro scopic Insight from Infrared Spectroscopy and Density Functional Theory Calculations, Adv. Funct. Mater., 23, 3471 (2013); https://doi.org/10.1002/adfm.201202808.
  40. Y. Lalatonne, C. Paris, J.M. Serfaty, P. Weinmann, M. Lecouvey and L. Motte, Bis-Phosphonates–Ultra Small Superparamagnetic Iron Oxide Nanoparticles: A Platform Towards Diagnosis and Therapy, Chem. Commun., 2553 (2008); https://doi.org/10.1039/b801911h.
  41. J. Eizenkop, I. Avrutsky, D.G. Georgiev and V. Chaudchary, Single-Pulse Excimer Laser Nanostructuring of Silicon: A Heat Transfer Problem and Surface Morphology, J. Appl. Phys., 103, 094311 (2008); https://doi.org/10.1063/1.2910196.
  42. J. Eizenkop, I. Avrutsky, G. Auner, D.G. Georgiev and V. Chaudhary, Single Pulse Excimer Laser Nanostructuring of Thin Silicon Films: Nanosharp Cones Formation and a Heat Transfer Problem, J. Appl. Phys., 101, 094301 (2007); https://doi.org/10.1063/1.2720185.