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I N T R O D U C T I O N

In recent decade, metallic nanoparticles have been widely
interested due to their interesting optical characteristics [1-8].
Resonances of surface plasmon in these nanoparticles lead to
increase in synchrotron radiation emission as a function of
the beam energy scattering and absorption in related frequency
[9,10]. Synchrotron radiation emission as a function of the
beam energy absorption and induced produced heat in nanopar-
ticles has been considered as a side effect in plasmonic appli-
cations for a long time [11-15]. Recently, scientists find that the
thermoplasmonic characteristic can be used for various opto-
thermal applications in cancer, nanoflows and photonic [16-22].
In optothermal human cancer cells, tissues and tumors treat-
ment, the descendent laser light stimulate resonance of surface
plasmon of metallic nanoparticles and as a result of this process,
the absorbed energy of descendent light converse to heat in
nanoparticles [23-25]. The produced heat devastates tumor
tissue adjacent to nanoparticles without any hurt to sound
tissues [26,27]. Regarding the simplicity of ligands connection
to dysprosium nanoparticles for targeting cancer cells, these
nanoparticles are more appropriate to use in optothermal
human cancer cells, tissues and tumors treatment [28-36]. In
the current paper, thermoplasmonic characteristics of spherical,
core-shell and rod dysprosium nanoparticles are investigated.

In present study, thermoplasmonic characteristics of dysprosium
nanoparticles with spherical, core-shell and rod shapes are investi-
gated. In order to investigate these characteristics, interaction of
synchrotron radiation emission as a function of the beam energy and
dysprosium nanoparticles were simulated using 3D finite element
method. Firstly, absorption and extinction cross-sections were
calculated. Then, increases in temperature due to synchrotron radiation
emission as a function of the beam energy absorption were calculated
in dysprosium nanoparticles by solving heat equation. The results
show that the dysprosium nanorods are more appropriate option for
using in optothermal human cancer cells, tissues and tumors treatment
method.
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Heat generation in synchrotron radiation emission as
a function of the beam energy-dysprosium nanoparticles
interaction: When dysprosium nanoparticles are subjected to
descendent light, a part of light scattered (emission process)
and the other part absorbed (non-emission process). The amount
of energy dissipation in non-emission process mainly depends
on material and volume of nanoparticles and it can be identified
by absorption cross section. At the other hand, emission process
which its characteristics depend on volume, shape and surface
characteristics of nanoparticles explains by scattering cross
section. Sum of absorption and scattering processes which lead
to light dissipation is called extinction cross section [37-40].

Dysprosium nanoparticles absorb energy of descendent
light and generate some heat in the particle. The generated
heat transferred to the surrounding environment and leads to
increase in temperature of adjacent points to nanoparticles.
Heat variations can be obtained by heat transfer equation
[41,42].

Simulation: To calculate the generated heat in dysprosium
nanoparticles, COMSOL software, which works by Finite
element method (FEM) was used. All simulations were made
in 3D. Firstly, absorption and scattering cross section areas
were calculated by optical module of software. Then, using
heat module, temperature variations of nanoparticles and its
surrounding environment were calculated by data from optical
module. In all cases, dysprosium nanoparticles are presented
in water environment with dispersion coefficient of 1.84 and
are subjected to flat wave emission with linear polarization.
Intensity of descendent light is 1 mW/µm2. Dielectric constant
of dysprosium is dependent on particle size.

Firstly, calculations were made for dysprosium nano-
spheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50
nm. The results show that by increase in nanoparticles size,
extinction cross section area increases and maximum wavelength
slightly shifts toward longer wavelengths. The maximum
increase in temperature of nanospheres in surface plasmon
frequency is shown in Fig. 1.
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Fig. 1. Maximum increase in temperature for dysprosium nanospheres

According to the graph, it can be seen that the generated
heat is increased by increase in nanoparticles size. For 100

nm nanoparticles (sphere with 50 nm radius), the maximum
increase in temperature is 83 K. When nanoparticles size reaches
to 150 nm, increase in temperature is increased in spite of increase
in extinction coefficient. In order to find the reason of this
fact, ratio of absorption to extinction for various nanospheres
in plasmon frequency is shown in Fig. 2.
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Fig. 2. Variations of absorption to extinction ratio and scattering to extinction
ratio for dysprosium nanospheres with various radii

Fig. 2 shows that increasing the size of nanospheres leads
to decrease in ratio of light absorption to total energy of
descendent light so that for 150 nm nanosphere, scattering
is larger than absorption. It seems that although increase in
nanoparticles size leads to more dissipation of descendent light,
the dissipation is in the form of scattering and hence, it cannot
be effective on heat generation.

Heat distribution (Fig. 3) shows that temperature is uni-
formly distributed throughout the nanoparticles, which are due
to high thermal conductivity of dysprosium.

In this section, core-shell structure of dysprosium and
silica is chosen. The core of a nanosphere with 45 nm radius
and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45
and 50 nm are considered. The results show that increase in
silica thickness leads to increase in extinction coefficient and
shift in plasmon wavelength of nanoparticles, to some extent.

According to Fig. 4, silica shell causes to considerable
increase in temperature of dysprosium nanoparticles but by
more increase in silica thickness, its effects are decreased. Heat
distribution (Fig. 5) shows that temperature is uniformly distri-
buted throughout metallic core as well as silica shell. However,
silica temperature is considerably lower than core temperature
due to its lower thermal conductivity. In fact, silica layer prohi-
bits heat transfer from metal to the surrounding aqueous environ-
ment due to low thermal conductivity and hence, temperature
of nanoparticles has more increase in temperature. Increasing
the thickness of silica shell leads to increase in its thermal
conductivity and hence, leads to attenuate in increase in nano-
particles temperature.

The graphs (Fig. 6) show that the variation of nanorod
dimension ratio leads to considerable shift in plasmon wave-
length. This fact allows regulating the plasmon frequency
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Fig. 4. Maximum increase in temperature for core-shell dysprosium
nanospheres with various thicknesses of silica shell
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Fig. 5. Maximum increase in temperature for core-shell nanoparticles with
radius of 45 nm and silica thickness of 10 nm at plasmon wavelength
of 701 nm
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Fig. 3. Maximum increase in temperature for spherical nanoparticles with radius of 45 nm at plasmon wavelength of 685 nm
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Fig. 6. Extinction cross section area for dysprosium nanorods with effective radius of 45 nm and various dimension ratios
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to place in near IR zone. Light absorption by body tissues is
lower in this zone of spectrum and hence, nanorods are more
appropriate for optothermal human cancer cells, tissues and
tumors treatment methods.

Variations of temperature in dysprosium nanorods with
two effective radius and various dimension ratios are shown in
Fig. 7. By increase in length (a) to radius (b) of nanorod, tempe-
rature is increased.
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Fig. 7. Maximum increase in temperature for nanorods with effective radius
of 20 and 45 nm and various dimension ratios

Conclusion

The calculations showed that in dysprosium nanoparticles,
light absorption in plasmon frequency causes to increase in
temperature of the surrounding environment of nanoparticles.
In addition, it showed that adding a thin silica layer around
the dysprosium nanospheres increases their temperatures.
Calculations of nanorods showed that due to ability for shifting
surface plasmon frequency toward longer wavelength as well
as more increase in temperature, this nanostructure is more
appropriate for medical applications such as optothermal
human cancer cells, tissues and tumors treatments.
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