Main Article Content

Abstract

In this article, we reported microwave assisted processing of vanadium oxide-polyaniline nanocomposite (PANI/V2O5). Firstly,  olyaniline (PANI) is synthesized by oxidative polymerization method and vanadium pentoxide nanoparticles. In the second step, intercalation of PANI in V2O5 framework are carried out in the microwave at 80 ºC for 30 min in Teflon crucibles. The XRD exhibited a set of well-defined peak support the crystal nature of nanocomposites. FTIR studies of the composite supported the intercalation of PANI with V2O5. The peaks obtained by cyclic voltammetry shows marginal separation between anodic peaks at 3.6 and 3.7 V for polyaniline and shifted to the higher potential for PANI/V2O5 nanocomposite. Also, the electrical conductivity is found to be 10-6 S cm-1 for PANI and higher electrical conductivity, 10-4 S cm-1 for nanocomposites.

Keywords

Vanadium oxide Polyaniline Nanocomposite Cyclic voltammetry Electrochemical properties

Article Details

References

  1. R. Gangopadhyay and A. De, Conducting Polymer Nanocomposites: A Brief Overview, Chem. Mater., 12, 608 (2000); https://doi.org/10.1021/cm990537f.
  2. S.S. Jeon, H.H. An, C.S. Yoon and S.S. Im, Synthesis of Ultra-Thin Polypyrrole Nanosheets for Chemical Sensor Applications, Polymer, 52, 652 (2011); https://doi.org/10.1016/j.polymer.2010.12.021.
  3. W. Kim, A.J. Makinen, N. Nikolov, R. Shashidhar, H. Kim and Z.H. Kafafi, Molecular Organic Light-Emitting Diodes Using Highly Conducting Polymers as Anodes, Appl. Phys. Lett., 80, 3844 (2002); https://doi.org/10.1063/1.1480100.
  4. C.-Y. Kuo, M.-S. Su, G.-Y. Chen, C.-S. Ku, H.-Y. Lee and K.-H. Wei, Annealing Treatment Improves the Morphology and Performance of Photovoltaic Devices Prepared from Thieno[3,4-c]pyrrole-4,6-dione-based Donor/Acceptor Conjugated Polymers and CdSe Nanostructures. Energy Environ. Sci., 4, 2316 (2011); https://doi.org/10.1039/c1ee01283e.
  5. J. Fang, K. Xu, L. Zhu, Z. Zhou and H. Tang, A Study on Mechanism of Corrosion Protection of Polyaniline Coating and its Failure, Corros. Sci., 49, 4232 (2007); https://doi.org/10.1016/j.corsci.2007.05.017.
  6. I. Musa, D.A.I. Munindrasdasa, G.A.J. Amaratunga and W. Eccleston, Ultra-Low-Threshold Field Emission from Conjugated Polymers, Nature, 395, 362 (1998); https://doi.org/10.1038/26444.
  7. C.W. Wang, Z. Wang, M.K. Li and H.L. Li, Well-Aligned Polyaniline Nano-Fibril Array Membrane and its Field Emission Property, Chem. Phys. Lett., 341, 431 (2001); https://doi.org/10.1016/S0009-2614(01)00509-7.
  8. B.H. Kim, M.S. Kim, K.T. Park, J.K. Lee, D.H. Park, J. Joo, S.G. Yu and S.H. Lee, Characteristics and Field Emission of Conducting Poly (3,4-ethylenedioxythiophene) Nanowires, Appl. Phys. Lett., 83, 539 (2003); https://doi.org/10.1063/1.1592004.
  9. B.H. Kim, D.H. Park, J. Joo, S.G. Yu and S.H. Lee, Synthesis, Characteristics and Field Emission of Doped and De-Doped Polypyrrole, Polyaniline, Poly(3,4-ethylenedioxythiophene) Nanotubes and Nanowires, Synth. Met., 150, 279 (2005); https://doi.org/10.1016/j.synthmet.2005.02.012.
  10. H. Yan, L. Zhang, J. Shen, Z. Chen, G. Shi and B. Zhang, Synthesis, Property and Field-Emission Behaviour of Amorphous Polypyrrole Nanowires, Nanotechnology, 17, 3446 (2006); https://doi.org/10.1088/0957-4484/17/14/017.
  11. R.B. Rakhi, K. Sethupathi and S. Ramaprabhu, Electron Field Emission Properties of Conducting Polymer Coated Multi-Walled Carbon Nanotubes, Appl. Surf. Sci., 254, 6770 (2008); https://doi.org/10.1016/j.apsusc.2008.04.094.
  12. H. Wang, J. Lin and Z.X. Shen, Polyaniline (PANi) Based Electrode Materials for Energy Storage and Conversion, J. Sci. Adv. Mater. Devices, 1, 225 (2016); https://doi.org/10.1016/j.jsamd.2016.08.001.
  13. R.B. Rakhi, K. Sethupathi and S. Ramaprabhu, Electron Field Emitters Based on Multi-Walled Carbon Nanotubes Coated with Conducting Polymer/Metal/Metal-Oxide Composites, J. Exp. Nanosci., 4, 67 (2009); https://doi.org/10.1080/17458080802610868.
  14. R. Nair, B. Premlal, A. Das and A.K. Sood, Enhanced Field Emission from Carbon Nanotube-Conducting Polymer Composites with Low Loading, Solid State Commun., 149, 150 (2009); https://doi.org/10.1016/j.ssc.2008.10.034.
  15. S.S. Patil, K.V. Harpale, A.D. Shinde, R.T. Khare, P.M. Koinkar and M.A. More, Facile Synthesis of Cadmium Sulphide-Polyaniline (CdS PANI) Nanocomposite and Its Field Emission Investigations, J. Polym. Res., 22, 113 (2015); https://doi.org/10.1007/s10965-015-0746-y.
  16. D.W. Bullett, The Energy Band Structure of V2O5: A Simpler Theoretical Approach, J. Phys. C Solid State Phys., 13, L595 (1980);
  17. https://doi.org/10.1088/0022-3719/13/23/006.
  18. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah and J.W. Zwanziger, ABINIT: First-Principles Approach to Material and Nanosystem Properties, Comput. Phys. Commun., 180, 2582 (2009); https://doi.org/10.1016/j.cpc.2009.07.007.
  19. K. Sieradzka, D. Wojcieszak, D. Kaczmarek and T. Berlicki, International Students and Young Scientists Workshop, pp. 73-74 (2010).
  20. Ming-Cheng and Wu Chi-Shen Le, Field Emission of Vertically Aligned V2O5 Nanowires on an ITO Surface Prepared with Gaseous Transport, J. Solid State Chem., 182, 2285 (2009); https://doi.org/10.1016/j.jssc.2009.05.042.
  21. C. Zhou, L. Mai, Y. Liu, Y. Qi, Y. Dai and W. Chen, Synthesis and Field Emission Property of V2O5·nH2O Nanotube Arrays, J. Phys. Chem. C, 111, 8202 (2007); https://doi.org/10.1021/jp0722509.
  22. F.K. Butt, C. Cao, F. Idrees, M. Tahir, R. Hussain and A.Z. Alshemary, Fabrication of V2O5 Super Long Nanobelts: Optical, in situ Electrical and Field Emission Properties, New J. Chem., 39, 5197 (2015); https://doi.org/10.1039/C5NJ00614G.
  23. T. Sen, S. Mishra and N.G. Shimpi, Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review, RSC Adv., 6, 42196 (2016); https://doi.org/10.1039/C6RA03049A.
  24. F. Huguenin, M. Ferreira, V. Zucolotto, F.C. Nart, R.M. Torresi and O.N. Oliveira, Molecular-Level Manipulation of V2O5/Polyaniline Layer-by-Layer Films to Control Electrochromogenic and Electrochemical Properties, J. Chem. Mater., 16, 2293 (2004); https://doi.org/10.1021/cm035171s.
  25. M. Gotic, S. Popovic, M. Ivanda and S. Music, Sol–Gel Synthesis and Characterization of V2O5 Powders, Mater. Lett., 57, 3186 (2003); https://doi.org/10.1016/S0167-577X(03)00022-3.
  26. N.Y. Abu-Thabit, Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles, J. Chem. Educ., 93, 1606 (2016); https://doi.org/10.1021/acs.jchemed.6b00060.
  27. S.S. Patil, S.P. Koiry, D.K. Aswal, P.M. Koinkar, R. Murakami and M.A. More, Promising Field Emission Characteristics of Polyaniline Nanotubes, J. Electrochem. Soc., 158, E63 (2011); https://doi.org/10.1149/1.3582525.
  28. A.A. Syed and M.K. Dinesan, Polyaniline-A Novel Polymeric Material, Talanta, 38, 815 (1991); https://doi.org/10.1016/0039-9140(91)80261-W.
  29. J. Pan, M. Li, Y. Luo, H. Wu, L. Zhong, Q. Wang and G. Li, Microwave-Assisted Hydrothermal Synthesis of V2O5 Nanorods Assemblies with an Improved Li-Ion Batteries Performance, Mater. Res. Bull., 74, 90 (2016); https://doi.org/10.1016/j.materresbull.2015.10.020.
  30. B. Li, Y. Xu, G. Rong, M. Jing and Y. Xie, Vanadium Pentoxide Nanobelts and Nanorolls: From Controllable Synthesis to Investigation of their Electrochemical Properties and Photocatalytic Activities, Nanotechnology, 17, 2560 (2006); https://doi.org/10.1088/0957-4484/17/10/020.
  31. S. Nalini, B. Selvakumar and P. Periasamy, Simple Synthesis and Characterization of V2O5 Nanoparticles by Microwave Assisted Wet Chemical Method, Int. J. Eng. Manufact. Sci., 7, 411 (2017).
  32. M.A. Jagtap, M.V. Kulkarni, S.K. Apte, S.D. Naik and B.B. Kale, Microwave-Assisted Hydrothermal Synthesis and Characterization o Tremella-Like Polyaniline-Vanadium Oxide Nanocomposite Nanosheets, Mater. Sci. Eng. B, 168, 199 (2010); https://doi.org/10.1016/j.mseb.2010.01.016.
  33. M. Krishna and S. Komarneni, Conventional vs. Microwave-Hydrothermal Synthesis of Tin Oxide, SnO2 Nanoparticles, Ceram. Int., 35, 3375 (2009); https://doi.org/10.1016/j.ceramint.2009.06.010.
  34. G.-T. Pan, M.-H. Lai, R.-C. Juang, T.-W. Chung and T.C.-K. Yang, Preparation of Visible-Light-Driven Silver Vanadates by a Microwave Assisted Hydrothermal Method for the Photodegradation of Volatile Organic Vapors, Ind. Eng. Chem. Res., 50, 2807 (2011); https://doi.org/10.1021/ie1012932.
  35. P. Ragupathy, H.N. Vasan, N. Munichandraiah and N. Vasanthacharya, Proceedings of SPIE, 8035 (Energy Harvesting and Storage: Materials, Devices and Applications II), 80350I/1-80350I/11 (2011).
  36. T. Thongtem, C. Pilapong, J. Kavinchan, A. Phuruangrat and S. Thongtem, Microwave-Assisted Hydrothermal Synthesis of Bi2S3 Nanorods in Flower-Shaped Bundles, J. Alloys Compd., 500, 195 (2010); https://doi.org/10.1016/j.jallcom.2010.03.240.