Main Article Content

Abstract

In this work, a copoly(lactic/glycolic)/cypermethrin nanoparticles was synthesized. A delivery system of insecticides induces active ingredient having desirable for pest control. The developed cypermethrin nanoparticles were then characterized by a UV-visible  spectrophotometer, DLS and transmission electron microscope, proved that the spherical, medium sized (230-340 nm). This nanoparticles may be an efficient candidate as a insecticide for control cockroach after the biological study which is in progress.

Keywords

Nanopesticide Cypermethrin Polylactic acid glycolide Pesticides Emulsion

Article Details

References

  1. S. Coelho, European Pesticide Rules Promote Resistance, Researchers Warn, Science, 323, 450 (2009); https://doi.org/10.1126/science.323.5913.450.
  2. M. Kah, S. Beulke, K. Tiede and T. Hofmann, Nanopesticides: State of Knowledge, Environmental Fate and Exposure Modeling, Crit. Rev. Environ. Sci. Technol., 43, 1823 (2013); https://doi.org/10.1080/10643389.2012.671750.
  3. N. Anton and T.F. Vandamme, Nano-Emulsions and Micro-Emulsions: Clarifications of the Critical Differences, Pharm. Res., 28, 978 (2011); https://doi.org/10.1007/s11095-010-0309-1.
  4. A. Knowles, Global Trends in Pesticide Formulation Technology: The Development of Safer Formulations in China, Outlooks Pest Manag., 20, 165 (2009); https://doi.org/10.1564/20aug06.
  5. T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials, Bull. Chem. Soc. Jpn., 63, 988 (1990); https://doi.org/10.1246/bcsj.63.988.
  6. Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schüth and G.D. Stucky, Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials, Nature, 368, 317 (1994); https://doi.org/10.1038/368317a0.
  7. T. Yokoi, K. Ogawa, D. Lu, J.N. Kondo, Y. Kubota and T. Tatsumi, Preparation of Chiral Mesoporous Materials with Helicity Perfectly Controlled, Chem. Mater., 23, 2014 (2011); https://doi.org/10.1021/cm1036666.
  8. J. Liu, X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim and M. Gong, Hybrid Mesoporous Materials with Functionalized Monolayers, Adv. Mater., 10, 161 (1998); https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<161::AID-ADMA161>3.0.CO;2-Q.
  9. F. Hoffmann, M. Cornelius, J. Morell and M. Fröba, Silica-Based Meso-porous Organic-Inorganic Hybrid Materials, Angew. Chem. Int. Ed. Engl., 45, 3216 (2006); https://doi.org/10.1002/anie.200503075.
  10. V.R. Yadav, S. Prasad, R. Kannappan, J. Ravindran, M.M. Chaturvedi, L. Vaahtera, J. Parkkinen and B.B. Aggarwal, Cyclodextrin Complexed Curcumin Exhibits Anti-Inflammatory and Antiproliferative Activities Superior to those of Curcumin through Higher Cellular Uptake, Biochem. Pharmacol., 80, 1021 (2010); http://dx.doi.org/10.1016/j.bcp.2010.06.022.
  11. H.K. Makadia and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, J. Polym., 3, 1377 (2011); https://doi.org/10.3390/polym3031377.
  12. C.D.S. Tomlin, A World Compendium, The Pesticide Manual, British Crop Protection Council, edn 12 (2004).
  13. M. Zhao, R. Li, C.W. Wu, W.Y. Hong and J.M. Chen, Evaluation of Field Control Efficiency of Different Insecticides on Larvae of Contarinia pyrivor (Riley), Agrochemicals, 48, 849 (2009).
  14. S. Spek, M. Haeuser, M. Schaefer and K. Langer, Characterisation of PEGylated PLGA Nanoparticles Comparing the Nanoparticle Bulk to the Particle Surface using UV/VIS Spectroscopy, SEC, 1H NMR Spectroscopy and X-Ray Photoelectron Spectroscopy, Appl. Surf. Sci., 347, 378 (2015); https://doi.org/10.1016/j.apsusc.2015.04.071.
  15. H. Murakami, M. Kobayashi, H. Takeuchi and Y. Kawashima, Prepar-ation of Poly(DL-lactide-co-glycolide) Nanoparticles by Modified Spontaneous Emulsification Solvent Diffusion Method, Int. J. Pharm., 187, 143 (1999); https://doi.org/10.1016/S0378-5173(99)00187-8.
  16. M. Zhu, Y. Zhu, L. Zhang and J. Shi, Preparation of Chitosan/Mesop-orous Silica Nanoparticle Composite Hydrogels for Sustained Co Delivery of Biomacromolecules and Small Chemical Drugs, Sci. Technol. Adv. Mater., 14, 045005 (2013); https://doi.org/10.1088/1468-6996/14/4/045005.
  17. D. Wei, W. Sun, W. Qian, Y. Ye and X. Ma, The Synthesis of Chitosan-Based Silver Nanoparticles and their Antibacterial Activity, Carbohydr. Res., 344, 2375 (2009); https://doi.org/10.1016/j.carres.2009.09.001.
  18. X.L. Cao, C. Cheng, Y.L. Ma and C.S. Zhao, Preparation of Silver Nanoparticles with Antimicrobial Activities and the Researches of their Biocompatibilities, J. Mater. Sci. Mater. Med., 21, 2861 (2010); https://doi.org/10.1007/s10856-010-4133-2.
  19. S.H. Sun, E.E. Fullerton, D. Weller and C.B. Murray, IEEE Trans. Magn., 37, 1239 (2001); https://doi.org/10.1109/20.950807.
  20. P. Pimpang, W. Sutham, N. Mangkorntong, P. Mangkorntong and S. Choopun, Effect of Stabilizer on Preparation of Silver and Gold Nanoparticle Using Grinding Method, Chiang Mai J. Sci., 35, 250 (2008).
  21. H.Z. Huang, Q. Yuan and X.R. Yang, Preparation and Characterization of Metal-Chitosan Nanocomposites, Colloids Surf. B Biointerfaces, 39, 31 (2004); https://doi.org/10.1016/j.colsurfb.2004.08.014.
  22. K. Shameli, M.M. Bin Ahmad, W.Z. Yunis, N.A. Ibrahim, Z. Mohsen, P. Shabanzadeh and M.G. Moghaddam, Synthesis and Characterization of Silver/Montmorillonite/Chitosan Bionanocomposites by Chemical Reduction Method and Their Antibacterial Activity, Int. J. Nanomedicine, 6, 271 (2011); https://doi.org/10.2147/IJN.S16043.
  23. V.K. Sharma, R.A. Yngard and Y. Lin, Silver Nanoparticles: Green Synthesis and their Antimicrobial Activities, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002.
  24. S. Hamedi, S.M. Ghaseminezhad, S.A. Shojaosadati and S. Shokrollahzadeh, Comparative Study on Silver Nanoparticles Properties Produced by Green Methods, Iranian J. Biotechnol., 10, 191 (2012)