Main Article Content

Abstract

The process of nucleation and crystallization of SrO·4MgO·Al2O3· 6SiO2·2MgF2 glasses with B2O3 as nucleating agent were characterized by differential thermal analysis, X-ray diffraction and scanning electron microscopy. A number of glass-ceramics of each glass batch with excess B2O3 [SR2 (2 % B2O3), SR4 (4 % B2O3), SR6 (6 % B2O3) and SR8 (8 % B2O3)] were made by heating at its  respective nucleation temperature followed by different ceramization temperatures (800- 1000 ºC). The analysis of DTA result indicated that the crystallization peak (Tp) and glass transition (Tg) temperatures decreased with increasing B2O3 content. It was also found that the higher B2O3 content, the higher the aspect ratio of fluorphlogopite crystal.

Keywords

Glass Ceramics Nucleation Crystallization Microstructure

Article Details

References

  1. P.W. Macmillan, Glass-Ceramics, Academic Press: London, edn 2 (1979).
  2. B. Aitken and G.H. Beall, eds.: R.W. Cahn, P. Haasen and E.J. Kramer Glass-Ceramics, In: Structure and Properties of Ceramics, Material Science and Technology, New York, pp 264 (1994).
  3. D.S. Baik, K.S. No, J.S. Chun, Y.J. Yoon and H.Y. Cho, A Comparative Evaluation Method of Machinability for Mica-Based Glass Ceramics, J. Mater. Sci., 30, 1801 (1995); https://doi.org/10.1007/BF00351613.
  4. S.N. Hoda and G.H. Beall, eds.: J.H. Simmons and D.R. Uhlmann Alkaline Earth Mica Glass Ceramics, In: Advances in Ceramics: Nucleation and Crystallization in Glasses, American Ceramic Society, pp 287 (1982).
  5. C.K. Chyung, G.H. Beall and D.G. Grossman, eds.: M. Kunugi, M. Tashiro and N. Saga, Microstructure and Mechanical Properties of Mica Glass-Ceramics, Tenth International Congress on Glass, Ceramic Society of Japan, Kyoto, Japan, pp 1167 (1974).
  6. C.K. Chyung, G.H. Beall and D.G. Grossman, Fluorphlogopite Mica Glass-Ceramics, Proceedings of the International Glass Congress, No. 14, Kyoto, Japan, Ceramic Society of Japan, Tokyo, Japan, pp. 33-40 (1974).
  7. T. Uno, T. Kasuga and K. Nakajima, High-Strength Mica-Containing Glass-Ceramics, J. Am. Ceram. Soc., 74, 3139 (1991); https://doi.org/10.1111/j.1151-2916.1991.tb04314.x.
  8. J. Henry and R.G. Hill, Influence of Alumina Content on the Nucleation Crystallization and Microstructure of Barium Fluorphlogopite Glass-Ceramics Based on 8SiO2·YAl2O34MgO2MgF2BaO Part I: Nucleation and Crystallization Behaviour, J. Mater. Sci., 39, 2499 (2004); https://doi.org/10.1023/B:JMSC.0000020016.18068.e6.
  9. J. Henry and R.G. Hill, The Influence of Lithia Content on the Properties of Fluorphlogopite Glass-Ceramics I. Nucleation and Crystallization Behaviour, J. Non-Cryst. Solids, 319, 1 (2003); https://doi.org/10.1016/S0022-3093(02)01958-0.
  10. K. Greene, M.J. Pomeroy, S. Hampshire and R. Hill, Effect of Compo-sition on the Properties of Glasses in the K2O–BaO–MgO–SiO2 Al2O3–B2O3–MgF2 System, J. Non-Cryst. Solids, 325, 193 (2003); https://doi.org/10.1016/S0022-3093(03)00337-5.
  11. P.K. Maiti, A. Mallik, A. Basumajumdar and P. Guha, Influence of Barium Oxide on the Crystallization, Microstructure and Mechanical Properties of Potassium Fluorophlogopite Glas-Ceramics, Ceram. Int., 38, 251 (2012); https://doi.org/10.1016/j.ceramint.2011.06.060.
  12. A. Mallik, P.K. Maiti, P. Kundu and A. Basumajumdar, Influence of B2O3 on Crystallization Behavior and Microstructure of Mica Glass-Ceramics in the System BaO·4MgO·Al2O3·6SiO2·2MgF2, J. Am. Ceram. Soc., 95, 3505 (2012); https://doi.org/10.1111/j.1551-2916.2012.05455.x.
  13. A. Mallik, P. Kundu and A. Basumajumdar, Nucleation, Crystallization Behavior and Microstructure of Mica Glass-Ceramics in the System SrO· 4MgO·xAl2O3·6SiO2·2MgF2 (x=1, 1.5 and 2), Ceram. Int., 39, 6963 (2013); https://doi.org/10.1016/j.ceramint.2013.02.033.
  14. A. Mallik, A.K. Barik and B. Pal, Fluoride Promoted Crystallization and Mechanical Properties of Sr-Fluorphlogopite Glass, J. Eur. Ceram. Soc., 37, 255 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.08.012.
  15. G.H. Beall, Mica Glass-Ceramics, US Patent 3689293 (1972).
  16. L. Rounan and Z. Peinan, J. Non-Cryst. Solids, 80, 600 (1986); https://doi.org/10.1016/0022-3093(86)90452-7.
  17. G.H. Beall, Mica Glass-Ceramics, US Patent 3801295 (1964).
  18. P.F. James, Glass Ceramics: New Compositions and Uses, J. Non-Cryst. Solids, 181, 1 (1995); https://doi.org/10.1016/0022-3093(94)00515-X.
  19. G.H. Beall, Strontium Fluormica Glass-Ceramics, US Patent US3756838A (1973).