Main Article Content

Abstract

A nanomaterials graphene and titanium oxide (TiO2) have been prepared and characterized by IR, atomic force microscopy (AFM) and  X-ray diffraction. The different thin films of mixed poly(vinyl alcohol) and polyacrylamide, polymers/nano TiO2 and polymers/ nano(graphene + titanium oxide) have been prepared and their electrical properties (real and imaginary electrical isolation constants and conductivity) were examined at different frequencies. A super capacitors based on polymer mixtures and polymers mixture with nanomaterials have been prepared and their voltages examined at charging and at different intervals of time (5, 10, 15 and 30 min and 1, 5, 10, 15 , 20 and 24 h). The best capacitor was of polymer mixture/nano(graphene + TiO2), which is attributed due to the good conductive properties of graphene. 

Keywords

Super capacitors Graphene Titanium oxide Electrical properties

Article Details

References

  1. S. Morimune, M. Kotera and T. Nishino, Stress Transfer of Poly(vinyl alcohol)/Montmorillonite Nanocomposite Using X-Ray Diffraction, J. Adhesion Soc. Japan, 46, 320 (2010); https://doi.org/10.11618/adhesion.46.320.
  2. C. Wei, D. Srivastava and K. Cho, Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites, Nano Lett., 2, 647 (2002); https://doi.org/10.1021/nl025554+.
  3. A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander and J. Kinaret, Science and Technology Road-map for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems, Nanoscale, 7, 4598 (2015); https://doi.org/10.1039/C4NR01600A.
  4. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, S. Ruoff and V. Pellegrini, Graphene, Related Two-Dimensional Crystals and Hybrid Systems for Energy Conversion and Storage, Science, 347, 1246501 (2015); https://doi.org/10.1126/science.1246501.
  5. B.C. Riggs, S. Adireddy, C.H. Rehm, V.S. Puli, R. Elupula and D.B. Chrisey, Polymer Nanocomposites for Energy Storage Applications, Mater. Today Proc., 2, 3853 (2015); https://doi.org/10.1016/j.matpr.2015.08.004.
  6. M.R. Lukatskaya, B. Dunn and Y. Gogotsi, Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage, Nat. Commun., 7, 12647 (2016); https://doi.org/10.1038/ncomms12647.
  7. X. Zhang and P. Samori, Graphene/Polymer Nanocomposites for Super-capacitors, ChemNanoMat., 3, 362 (2017); https://doi.org/10.1002/cnma.201700055.
  8. A.K. Geim and K.S. Novoselov, The Rise of Graphene, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849.
  9. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872.
  10. W. Cai, Y. Zhu, X. Li, R.D. Piner and R.S. Ruoff, Large Area Few-Layer Graphene/Graphite Films as Transparent Thin Conducting Electrodes, Appl. Phys. Lett., 95, 123115 (2009); https://doi.org/10.1063/1.3220807.
  11. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo and R.S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Lett., 9, 4359 (2009); https://doi.org/10.1021/nl902623y.
  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
  13. G. Eda, G. Fanchini and M. Chhowalla, Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material, Nat. Nanotechnol., 3, 270 (2008); https://doi.org/10.1038/nnano.2008.83.
  14. S.N. Tripathi, P. Saini, D. Gupta and V. Choudhary, Electrical and Mech-anical Properties of PMMA/Reduced Graphene Oxide Nanocomposites Prepared via in situ Polymerization, J. Mater. Sci., 48, 6223 (2013); https://doi.org/10.1007/s10853-013-7420-8.
  15. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose and J.H. Lee, Recent Advances in Graphene Based Polymer Composites, Prog. Polym. Sci., 35, 1350 (2010); https://doi.org/10.1016/j.progpolymsci.2010.07.005.
  16. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The Electronic Properties of Graphene, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109.
  17. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties and Applications, Adv. Mater., 22, 3906 (2010); https://doi.org/10.1002/adma.201001068.
  18. K.S. Subrahmanyam, A.K.Manna, S.K. Pati and C.N.R. Rao, A Study of Graphene Decorated with Metal Nanoparticles, Chem. Phys. Lett., 497, 70 (2010); https://doi.org/10.1016/j.cplett.2010.07.091.
  19. G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng and Q. Wu, Graphene Oxide: The Mechanisms of Oxidation and Exfoliation, J. Mater. Sci., 47, 4400 (2012); https://doi.org/10.1007/s10853-012-6294-5.
  20. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek and I. Bieloshapka, Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods, J. Elect. Spectrosc. Rel. Phenom., 195, 145(2014); https://doi.org/10.1016/j.elspec.2014.07.003.
  21. J. Huang and Y.J. Yuan, A Sedimentation Study of Graphene Oxide in Aqueous Solution using Gradient Differential Centrifugation, Phys. Chem. Chem. Phys., 18, 12312 (2016); https://doi.org/10.1039/C6CP00167J.
  22. D.H. Tien, J.-Y. Park, K.B. Kim, N. Lee, T. Choi, P. Kim, T. Taniguchi, K. Watanabe and Y. Seo, Study of Graphene-Based 2D Heterostructure Device Fabricated by All-Dry Transfer Process, ACS Appl. Mater. Interfaces, 8, 3072 (2016); https://doi.org/10.1021/acsami.5b10370.
  23. S.V. Harb, S.H. Pulcinelli, C.V. Santilli, K.M. Knowles and P. Hammer, A Comparative Study on Graphene Oxide and Carbon Nanotube Rein-forcement of PMMA-Siloxane-Silica Anticorrosive Coatings, ACS Appl. Mater. Interfaces, 8, 16339 (2016); https://doi.org/10.1021/acsami.6b04780.
  24. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
  25. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang, Study on Composition, Structure and Formation Process of Nanotube Na2Ti2O4(OH)2, Dalton Trans., 20, 3898 (2003); https://doi.org/10.1039/B305585J.
  26. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang and Z. Zhang, Effect of Annealing Temperature on Morphology, Structure and Photo-catalytic Behavior of Nanotubed H2Ti2O4(OH)2, J. Mol. Catal. Chem., 217, 203 (2004); https://doi.org/10.1016/j.molcata.2004.03.032.
  27. A. Thorne, A. Kruth, D. Tunstall, J.T.S. Irvine and W. Zhou, Formation, Structure and Stability of Titanate Nanotubes and Their Proton Conduc-tivity, J. Phys. Chem. B, 109, 5439 (2005); https://doi.org/10.1021/jp047113f.
  28. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio and H. Aritani, Synthesis of Nanotube from a Layered H2Ti4O9·H2O in a Hydrothermal Treatment using Various Titania Sources, J. Mater. Sci., 39, 4239 (2004); https://doi.org/10.1023/B:JMSC.0000033405.73881.7c.
  29. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368.
  30. S.I. Javed and Z. Hussain, Covalently Functionalized Graphene Oxide- Characterization and Its Electrochemical Performance, Int. J. Electro-chem. Sci., 10, 9475 (2015).
  31. V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim and R. Zboril, Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic and Biomedical Applications, Chem. Rev., 116, 5464 (2016); https://doi.org/10.1021/acs.chemrev.5b00620.
  32. C. Dumitriu and C. Pirvu, Electrochemical Studies on TiO2 Nanotubes Modified Ti Electrodes, U.P.B. Sci. Bull., Series B, 74(3), 93 (2012).
  33. Z. Xiong, L.L. Zhang, J. Ma and X.S. Zhao, Photocatalytic Degradation of Dyes Over Graphene-Gold Nanocomposites under Visible Light Irradiation, Chem. Commun., 46, 6099 (2010); https://doi.org/10.1039/c0cc01259a.
  34. T.N. Blanton and D. Majumdar, Proceedings of Denver X-Ray Conference (DXC) on Applications of X-Ray Analysis, International Centre for Diffraction Data (ICDD), p. 116 (2012).
  35. A.H. Abd Al-Razak, Analytical Study Using X-Ray Diffraction Methods and Hardness Test for Lead-Tin Alloy, Iraqi J. Sci., 53, 322 (2012).
  36. R.S. Dubey, Synthesis and Characterization of Titania Nanotube Arrays by Electrochemical Method for Dye Sensitized Solar Cells, Arch. Appl. Sci. Res., 5, 28 (2013).
  37. W. Liu, J. Gao, F. Zhang and G. Zhang, Preparation of TiO2 Nanotubes and their Photocatalytic Properties in Degradation Methylcyclohexane, Mater. Trans., 48, 2464 (2007); https://doi.org/10.2320/matertrans.MRA2007616.