Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectroscopic and Investigation on Potential of p-Nitroanilide Derivatives as Chromogenic Substrates for Detection of Endotoxin
Corresponding Author(s) : M.A. Kadir
Asian Journal of Chemistry,
Vol. 28 No. 11 (2016): Vol 28 Issue 11
Abstract
The development of p-nitroanilide derivatives as chromogenic substrates has become a subject of interest due to their prominent use in detecting endotoxin chromogenically. In this study, two new p-nitroanilide compounds namely tert-butyl(1-((2-((4-nitrophenyl)amino)-2-oxoethyl)amino)-1-oxopropan-2-yl)carbamate (P1) and tert-butyl(1-((4-(methylthio)-1-((4-nitrophenyl)amino)-1-oxobutan-2-yl)amino)-1-oxopropan-2-yl)carbamate (P2) were obtained in good yield and characterized using combination of common spectroscopic techniques such as Fourier transform infrared, ultraviolet-visible, 1H and 13C nuclear magnetic resonances. The synthesized compounds were subjected to biological study to investigate their potential to detect endotoxin. From this approach, it was revealed that compound P1 gave positive response towards endotoxin by rapidly changed into cloudy solution. However, compound P2, which has limited solubility in the analysis gave negative responses where the solution of P2 remained unchange.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Manafi, Int. J. Food Microbiol., 60, 205 (2000); doi:10.1016/S0168-1605(00)00312-3.
- D.T. Rijkers, H.P. Adams, H.C. Hemker and G.I. Tesser, Tetrahedron, 51, 11235 (1995); doi:10.1016/0040-4020(95)00671-T.
- X. Wu, Y. Chen, H. Aloysius and L. Hu, Beilstein J. Org. Chem., 7, 1030 (2011); doi:10.3762/bjoc.7.117.
- S. Iwanaga, T. Morita, T. Miyata, T. Nakamura and J. Aketagawa, J. Protein Chem., 5, 255 (1986); doi:10.1007/BF01025424.
- M. Cellier, A.L. James, S. Orenga, J.D. Perry, A.K. Rasul, S.N. Robinson and S.P. Stanforth, Bioorg. Med. Chem., 22, 5249 (2014); doi:10.1016/j.bmc.2014.08.004.
- L.L.M. Thomas, A. Sturk, L.H. Kahlé and J.W. ten Cate, Clin. Chim. Acta, 116, 63 (1981); doi:10.1016/0009-8981(81)90169-8.
- C.S. Ostronoff and F.R. Lourenço, J. AOAC Int., 98, 51 (2015); doi:10.5740/jaoacint.14-118.
- R. Harris, P. Stone and J. Stuart, J. Clin. Pathol., 36, 1145 (1983); doi:10.1136/jcp.36.10.1145.
- R. Reissbrodt, Int. J. Food Microbiol., 95, 1 (2004); doi:10.1016/j.ijfoodmicro.2004.01.025.
- K. Cho, T. Tanaka, R.R. Cook, W. Kisiel, K. Fujikawa, K. Kurachi and J.C. Powers, Biochemistry, 23, 644 (1984); doi:10.1021/bi00299a009.
- B.F. Erlanger, N. Kokowsky and W. Cohen, Arch. Biochem. Biophys., 95, 271 (1961); doi:10.1016/0003-9861(61)90145-X.
- N. Abramowitz, I. Schechter and A. Berger, Biochem. Biophys. Res. Commun., 29, 862 (1967); doi:10.1016/0006-291X(67)90299-9.
- R.E. Smith, J. Histochem. Cytochem., 31(1A Suppl), 199 (1983); doi:10.1177/31.1A_Suppl.6338104.
- E. Westhead Jr. and H. Morawetz, J. Am. Chem. Soc., 80, 237 (1958); doi:10.1021/ja01534a060.
- H.J. Karlsson and G. Westman, Tetrahedron, 56, 8939 (2000); doi:10.1016/S0040-4020(00)00820-6.
- L. Lyublinskaya, S. Belyaev, A.Y. Strongin, L. Matyash, E. Levin and V. Stepanov, Anal. Biochem., 62, 371 (1974); doi:10.1016/0003-2697(74)90169-9.
- S. Rosen, Hamostaseologie, 25, 259 (2005).
- G. Magro, R.E. Bain, C.A. Woodall, R.L. Matthews, S.W. Gundry and A.P. Davis, Environ. Sci. Technol., 48, 9624 (2014); doi:10.1021/es502319n.
- Y. Kwon, K. Welsh, A.R. Mitchell and J.A. Camarero, Org. Lett., 6, 3801 (2004); doi:10.1021/ol048417n.
- E. Zabłotna, H. Dysasz, A. Lesner, A. Jaśkiewicz, K. Kaźmierczak, H. Miecznikowska and K. Rolka, Biochem. Biophys. Res. Commun., 319, 185 (2004); doi:10.1016/j.bbrc.2004.04.170.
- H. Nedev, H. Nabarisoa and T. Haertle, Tetrahedron Lett., 34, 4201 (1993); doi:10.1016/S0040-4039(00)60527-0.
- H. Oyamada, T. Saito, S. Inaba and M. Ueki, Bull. Chem. Soc. Jpn., 64, 1422 (1991); doi:10.1246/bcsj.64.1422.
- H. Oyamada and M. Ueki, Bull. Chem. Soc. Jpn., 60, 267 (1987); doi:10.1246/bcsj.60.267.
- J.L. Torres, I. Haro, G. Valencia, J.M. Garcia Anton and F. Reig, Tetrahedron, 43, 4031 (1987); doi:10.1016/S0040-4020(01)81686-0.
- V. Evans, M.F. Mahon and R.L. Webster, Tetrahedron, 70, 7593 (2014); doi:10.1016/j.tet.2014.07.080.
- K.I. Duner, J. Biochem. Biophys. Methods, 26, 131 (1993); doi:10.1016/0165-022X(93)90043-N.
- O. Takeuchi, K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda and S. Akira, Immunity, 11, 443 (1999); doi:10.1016/S1074-7613(00)80119-3.
- R. Medzhitov and C.A. Janeway Jr., Cell, 91, 295 (1997); doi:10.1016/S0092-8674(00)80412-2.
- B. Stuart, Infrared spectroscopy, Wiley Online Library (2005).
- C.K. Özer, H. Arslan, D. van Derveer and N. Külcü, Molecules, 14, 655 (2009); doi:10.3390/molecules14020655.
- V. Arjunan, P. Ravindran, K. Subhalakshmi and S. Mohan, Spectrochim. Acta A, 74, 607 (2009); doi:10.1016/j.saa.2009.07.008.
- A.D. Marinković, D. Brkić, J.S. Martinović, D.Ž. Mijin, M. Milčić and S.D. Petrović, Chem. Ind. Chem. Eng. Quart., 19, 67 (2013); doi:10.2298/CICEQ120109044M.
- V.L. Furer, J. Mol. Struct., 449, 53 (1998); doi:10.1016/S0022-2860(98)00363-9.
- M. Wolpert and P. Hellwig, Spectrochim. Acta A, 64, 987 (2006); doi:10.1016/j.saa.2005.08.025.
- M. Etter, A. Nigar, N.Z. Ali, Z. Akhter and R.E. Dinnebier, Solid State Sci., 55, 29 (2016); doi:10.1016/j.solidstatesciences.2016.01.011.
- M.N. Levine, L.D. Lavis and R.T. Raines, Molecules, 13, 204 (2008); doi:10.3390/molecules13020204.
- K. Takada, S. Sakakibara, H. Kato, T. Goto and S. Iwanaga, Thromb. Res., 20, 533 (1980); doi:10.1016/0049-3848(80)90141-3.
- M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz and J. Pielichowski, Macromolecules, 31, 5051 (1998); doi:10.1021/ma970627a.
- T. Mita, M. Sugawara, H. Hasegawa and Y. Sato, J. Org. Chem., 77, 2159 (2012); doi:10.1021/jo202597p.
- G. Sun, N.J. Uretsky, L.J. Wallace, G. Shams, D.M. Weinstein and D.D. Miller, J. Med. Chem., 39, 4430 (1996); doi:10.1021/jm950632+.
- M. Kadir, R. Ramli, M.S.M. Yusof, N. Ismail and N. Ngah, Asian J. Chem., 28, 596 (2016); doi:10.14233/ajchem.2016.19430.
- K.-X. Xu, P.-F. Cheng, J. Zhao and C.-J. Wang, J. Fluoresc., 21, 991 (2011); doi:10.1007/s10895-009-0585-5.
- R.J. Stumacher, M.J. Kovnat and W.R. McCabe, N. Engl. J. Med., 288, 1261 (1973); doi:10.1056/NEJM197306142882402.
- E.G. Del Mar, C. Largman, J.W. Brodrick, M. Fassett and M.C. Geokas, Biochemistry, 19, 468 (1980); doi:10.1021/bi00544a011.
References
M. Manafi, Int. J. Food Microbiol., 60, 205 (2000); doi:10.1016/S0168-1605(00)00312-3.
D.T. Rijkers, H.P. Adams, H.C. Hemker and G.I. Tesser, Tetrahedron, 51, 11235 (1995); doi:10.1016/0040-4020(95)00671-T.
X. Wu, Y. Chen, H. Aloysius and L. Hu, Beilstein J. Org. Chem., 7, 1030 (2011); doi:10.3762/bjoc.7.117.
S. Iwanaga, T. Morita, T. Miyata, T. Nakamura and J. Aketagawa, J. Protein Chem., 5, 255 (1986); doi:10.1007/BF01025424.
M. Cellier, A.L. James, S. Orenga, J.D. Perry, A.K. Rasul, S.N. Robinson and S.P. Stanforth, Bioorg. Med. Chem., 22, 5249 (2014); doi:10.1016/j.bmc.2014.08.004.
L.L.M. Thomas, A. Sturk, L.H. Kahlé and J.W. ten Cate, Clin. Chim. Acta, 116, 63 (1981); doi:10.1016/0009-8981(81)90169-8.
C.S. Ostronoff and F.R. Lourenço, J. AOAC Int., 98, 51 (2015); doi:10.5740/jaoacint.14-118.
R. Harris, P. Stone and J. Stuart, J. Clin. Pathol., 36, 1145 (1983); doi:10.1136/jcp.36.10.1145.
R. Reissbrodt, Int. J. Food Microbiol., 95, 1 (2004); doi:10.1016/j.ijfoodmicro.2004.01.025.
K. Cho, T. Tanaka, R.R. Cook, W. Kisiel, K. Fujikawa, K. Kurachi and J.C. Powers, Biochemistry, 23, 644 (1984); doi:10.1021/bi00299a009.
B.F. Erlanger, N. Kokowsky and W. Cohen, Arch. Biochem. Biophys., 95, 271 (1961); doi:10.1016/0003-9861(61)90145-X.
N. Abramowitz, I. Schechter and A. Berger, Biochem. Biophys. Res. Commun., 29, 862 (1967); doi:10.1016/0006-291X(67)90299-9.
R.E. Smith, J. Histochem. Cytochem., 31(1A Suppl), 199 (1983); doi:10.1177/31.1A_Suppl.6338104.
E. Westhead Jr. and H. Morawetz, J. Am. Chem. Soc., 80, 237 (1958); doi:10.1021/ja01534a060.
H.J. Karlsson and G. Westman, Tetrahedron, 56, 8939 (2000); doi:10.1016/S0040-4020(00)00820-6.
L. Lyublinskaya, S. Belyaev, A.Y. Strongin, L. Matyash, E. Levin and V. Stepanov, Anal. Biochem., 62, 371 (1974); doi:10.1016/0003-2697(74)90169-9.
S. Rosen, Hamostaseologie, 25, 259 (2005).
G. Magro, R.E. Bain, C.A. Woodall, R.L. Matthews, S.W. Gundry and A.P. Davis, Environ. Sci. Technol., 48, 9624 (2014); doi:10.1021/es502319n.
Y. Kwon, K. Welsh, A.R. Mitchell and J.A. Camarero, Org. Lett., 6, 3801 (2004); doi:10.1021/ol048417n.
E. Zabłotna, H. Dysasz, A. Lesner, A. Jaśkiewicz, K. Kaźmierczak, H. Miecznikowska and K. Rolka, Biochem. Biophys. Res. Commun., 319, 185 (2004); doi:10.1016/j.bbrc.2004.04.170.
H. Nedev, H. Nabarisoa and T. Haertle, Tetrahedron Lett., 34, 4201 (1993); doi:10.1016/S0040-4039(00)60527-0.
H. Oyamada, T. Saito, S. Inaba and M. Ueki, Bull. Chem. Soc. Jpn., 64, 1422 (1991); doi:10.1246/bcsj.64.1422.
H. Oyamada and M. Ueki, Bull. Chem. Soc. Jpn., 60, 267 (1987); doi:10.1246/bcsj.60.267.
J.L. Torres, I. Haro, G. Valencia, J.M. Garcia Anton and F. Reig, Tetrahedron, 43, 4031 (1987); doi:10.1016/S0040-4020(01)81686-0.
V. Evans, M.F. Mahon and R.L. Webster, Tetrahedron, 70, 7593 (2014); doi:10.1016/j.tet.2014.07.080.
K.I. Duner, J. Biochem. Biophys. Methods, 26, 131 (1993); doi:10.1016/0165-022X(93)90043-N.
O. Takeuchi, K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda and S. Akira, Immunity, 11, 443 (1999); doi:10.1016/S1074-7613(00)80119-3.
R. Medzhitov and C.A. Janeway Jr., Cell, 91, 295 (1997); doi:10.1016/S0092-8674(00)80412-2.
B. Stuart, Infrared spectroscopy, Wiley Online Library (2005).
C.K. Özer, H. Arslan, D. van Derveer and N. Külcü, Molecules, 14, 655 (2009); doi:10.3390/molecules14020655.
V. Arjunan, P. Ravindran, K. Subhalakshmi and S. Mohan, Spectrochim. Acta A, 74, 607 (2009); doi:10.1016/j.saa.2009.07.008.
A.D. Marinković, D. Brkić, J.S. Martinović, D.Ž. Mijin, M. Milčić and S.D. Petrović, Chem. Ind. Chem. Eng. Quart., 19, 67 (2013); doi:10.2298/CICEQ120109044M.
V.L. Furer, J. Mol. Struct., 449, 53 (1998); doi:10.1016/S0022-2860(98)00363-9.
M. Wolpert and P. Hellwig, Spectrochim. Acta A, 64, 987 (2006); doi:10.1016/j.saa.2005.08.025.
M. Etter, A. Nigar, N.Z. Ali, Z. Akhter and R.E. Dinnebier, Solid State Sci., 55, 29 (2016); doi:10.1016/j.solidstatesciences.2016.01.011.
M.N. Levine, L.D. Lavis and R.T. Raines, Molecules, 13, 204 (2008); doi:10.3390/molecules13020204.
K. Takada, S. Sakakibara, H. Kato, T. Goto and S. Iwanaga, Thromb. Res., 20, 533 (1980); doi:10.1016/0049-3848(80)90141-3.
M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz and J. Pielichowski, Macromolecules, 31, 5051 (1998); doi:10.1021/ma970627a.
T. Mita, M. Sugawara, H. Hasegawa and Y. Sato, J. Org. Chem., 77, 2159 (2012); doi:10.1021/jo202597p.
G. Sun, N.J. Uretsky, L.J. Wallace, G. Shams, D.M. Weinstein and D.D. Miller, J. Med. Chem., 39, 4430 (1996); doi:10.1021/jm950632+.
M. Kadir, R. Ramli, M.S.M. Yusof, N. Ismail and N. Ngah, Asian J. Chem., 28, 596 (2016); doi:10.14233/ajchem.2016.19430.
K.-X. Xu, P.-F. Cheng, J. Zhao and C.-J. Wang, J. Fluoresc., 21, 991 (2011); doi:10.1007/s10895-009-0585-5.
R.J. Stumacher, M.J. Kovnat and W.R. McCabe, N. Engl. J. Med., 288, 1261 (1973); doi:10.1056/NEJM197306142882402.
E.G. Del Mar, C. Largman, J.W. Brodrick, M. Fassett and M.C. Geokas, Biochemistry, 19, 468 (1980); doi:10.1021/bi00544a011.