Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Nutritional and Antinutritional Profile of Value Added Products Made from Tapioca Tubers from Assam, India
Corresponding Author(s) : Priyanka Das
Asian Journal of Chemistry,
Vol. 28 No. 9 (2016): Vol 28 Issue 9
Abstract
Tapioca or cassava (Manihot esculanta Crantz) has emerged as a commercial crop in India. North Eastern states including Assam is a potential tapioca growing state. In the present study, tapioca tubers of Assam, collected from two important tapioca growing locations were utilized to process products like plain flour, rawa (parboiled flour) and also for extraction of starch. These products were analyzed for nutritional and antinutritional quality. The moisture content of various tapioca products ranged from 1.82 to 3.61 % (wet basis). The starch content of various tapioca products ranged from 60.28 to 71.34 % (dry basis). The ash content of various tapioca products ranged from 1.11 to 10.43 % (dry basis). The crude fat content was found to be in between 0.27 and 12.91 % (dry basis). The crude fibre content showed values in between 0.50 and 6.1 % (dry basis). The crude protein content ranged from 0.90 to 5.31 % (dry basis). The sodium and the potassium content ranged from 2.40 to 7.13 mg % and from 0.60 to 6.92 mg % (dry basis), respectively. The calcium, phosphorous and iron content (dry basis) ranged from 15.67 to 57.67 mg %, 17.87 to 78.39 mg % and 0.18 to 0.57 mg %, respectively. The antinutritional component, total cyanogen ranged from 5.18 to 107.39 μg per g (dry basis). It was observed that the sun dried products were safer in comparison to the products (chips) either dried using tray drier at a temperature of 55 °C or treated in hot water for parboiling, both immediately after chipping.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Lawrence and L.M. Moore, United States Department of Agriculture Plant Guide; Cassava, Manihot esculenta Crantz. USDA: Washington, DC (2005).
- K. Kawano, Crop Sci., 43, 1325 (2003); doi:10.2135/cropsci2003.1325.
- M.A. Santana, V. Vásquez, J. Matehus and R.A. Aldao, Plant Physiol., 129, 1686 (2002); doi:10.1104/pp.000927.
- T.A. Shittu, L.O. Sanni, S.O. Awonorin, B. Maziya-Dixon and A. Dixon, Food Chem., 101, 1606 (2007); doi:10.1016/j.foodchem.2006.04.017.
- M.O. Onitilo, L.O. Sanni, O.B. Oyewole and B. Maziya-Dixon, Int. J. Food Proper, 10, 607 (2007); doi:10.1080/10942910601048994.
- R.D. Cooke and E.N. Maduagwu, J. Food Technol., 13, 299 (1978); doi:10.1111/j.1365-2621.1978.tb00807.x.
- B. Nambisan and S. Sundaresan, J. Sci. Food Agric., 36, 1197 (1985); doi:10.1002/jsfa.2740361126.
- E.A. Udensi, A.U.C. Ukozor and F.C. Ekwu, Int. J. Food Properties, 8, 171 (2005); doi:10.1081/JFP-200048151.
- B.O. Eggum, Br. J. Nutr., 24, 761 (1970); doi:10.1079/BJN19700078.
- S. Nitayavardhana, P. Shrestha, M.L. Rasmussen, B.P. Lamsal, J.H. van Leeuwen and S.K. Khanal, Biosource Technol., 101, 2741 (2010); doi:10.1016/j.biortech.2009.10.075.
- AOAC, Official Method and Analysis of the Association of Official Analytical Chemists, Washington, DC, edn 11 (1970).
- K.M. Clegg, J. Sci. Food Agric., 7, 40 (1956); doi:10.1002/jsfa.2740070108.
- P.B. Hawk, Practical Physiological Chemistry, edn 13, p. 644 (1957).
- S.Y. Wong, J. Biol. Chem., 67, 409 (1928).
- D.H. Fiske and Y. Subbarow, J. Biol. Chem., 66, 375 (1925).
- B. Nambisan, J. Agric. Food Chem., 47, 372 (1999); doi:10.1021/jf980768r.
- S. Sarkiyayi and T.M. Agar, Adv. J. Food Sci. Technol., 2, 328 (2010).
- C.C. Rojas, B. Nair, A. Herbas and B. Bergenstahl, Bolivian J. Chem., 24, 70 (2007).
- M.P. Cereda and M.C.Y. Mattos, J. Venom Anim. Toxins, 2, 06 (1996); doi:10.1590/S0104-79301996000100002.
References
J.H. Lawrence and L.M. Moore, United States Department of Agriculture Plant Guide; Cassava, Manihot esculenta Crantz. USDA: Washington, DC (2005).
K. Kawano, Crop Sci., 43, 1325 (2003); doi:10.2135/cropsci2003.1325.
M.A. Santana, V. Vásquez, J. Matehus and R.A. Aldao, Plant Physiol., 129, 1686 (2002); doi:10.1104/pp.000927.
T.A. Shittu, L.O. Sanni, S.O. Awonorin, B. Maziya-Dixon and A. Dixon, Food Chem., 101, 1606 (2007); doi:10.1016/j.foodchem.2006.04.017.
M.O. Onitilo, L.O. Sanni, O.B. Oyewole and B. Maziya-Dixon, Int. J. Food Proper, 10, 607 (2007); doi:10.1080/10942910601048994.
R.D. Cooke and E.N. Maduagwu, J. Food Technol., 13, 299 (1978); doi:10.1111/j.1365-2621.1978.tb00807.x.
B. Nambisan and S. Sundaresan, J. Sci. Food Agric., 36, 1197 (1985); doi:10.1002/jsfa.2740361126.
E.A. Udensi, A.U.C. Ukozor and F.C. Ekwu, Int. J. Food Properties, 8, 171 (2005); doi:10.1081/JFP-200048151.
B.O. Eggum, Br. J. Nutr., 24, 761 (1970); doi:10.1079/BJN19700078.
S. Nitayavardhana, P. Shrestha, M.L. Rasmussen, B.P. Lamsal, J.H. van Leeuwen and S.K. Khanal, Biosource Technol., 101, 2741 (2010); doi:10.1016/j.biortech.2009.10.075.
AOAC, Official Method and Analysis of the Association of Official Analytical Chemists, Washington, DC, edn 11 (1970).
K.M. Clegg, J. Sci. Food Agric., 7, 40 (1956); doi:10.1002/jsfa.2740070108.
P.B. Hawk, Practical Physiological Chemistry, edn 13, p. 644 (1957).
S.Y. Wong, J. Biol. Chem., 67, 409 (1928).
D.H. Fiske and Y. Subbarow, J. Biol. Chem., 66, 375 (1925).
B. Nambisan, J. Agric. Food Chem., 47, 372 (1999); doi:10.1021/jf980768r.
S. Sarkiyayi and T.M. Agar, Adv. J. Food Sci. Technol., 2, 328 (2010).
C.C. Rojas, B. Nair, A. Herbas and B. Bergenstahl, Bolivian J. Chem., 24, 70 (2007).
M.P. Cereda and M.C.Y. Mattos, J. Venom Anim. Toxins, 2, 06 (1996); doi:10.1590/S0104-79301996000100002.