Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Selection of Organic Solvents for Microencapsulation Technique Among Chlorobenzene, 1,4-Dioxane and Benzaldehyde with Water
Corresponding Author(s) : Ronda Srinivasa Reddy
Asian Journal of Chemistry,
Vol. 28 No. 9 (2016): Vol 28 Issue 9
Abstract
Surface tension, density, ultrasonic velocity, viscosity and refractive index values have been determined at temperatures 313.15 K for the whole compositions for the binary liquid mixtures of chlorobenzene, 1,4-dioxane and benzaldehyde with water at atmospheric pressure. These experimental values have been used to estimate the respective excess properties along with some acoustic properties namely, excess molar volume (VE), viscosity deviation (Δη), deviation in refractive index (ΔnD), deviation in ultrasonic velocity (Δu), isentropic compressibility (β), intermolecular free length (Lf), acoustic impedance (Z), deviation in acoustic impedance (ΔZ), degree of intermolecular attraction (δ), relaxation time (τ), free volume (Vf), absorption coefficient (α), deviation in surface tension (Δσ), Gibbs free energy (ΔGE) and internal pressures (πi). The excess values of these parameters are also evaluated over the different mole fraction range. The result is interpreted in terms of molecular interaction such as dipole-dipole interaction through hydrogen bonding between components of mixtures. The dependence of excess properties of mixtures on compositions were compared and discussed in terms of the intermolecular free length and other factors affecting the salvation and self-association effect. The excess values of these indicate the complexity of dipole-induced interaction in the binary liquid mixtures and also discussed selection of organic solvent for microencapsulation techniques. Also the new model equations have been developed by using Design Expert program for viscosity, ultrasonic velocity, refractive index, surface tension and density.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Megremis, M. Chatziioannou and L. Tritou, J. Ultrasound Med., 129, 145 (2010).
- G.S. Reddy and M.M. Reddy, J. Chem. Pharm. Res., 5, 644 (2013).
- G.S. Reddy and M.M. Reddy, Int. J. Pharm. Bio. Sci., 5, 1064 (2014).
- G.S. Reddy, M.M. Reddy and S. Chowdary, Asian J. Biochem. Pharm. Res., 4, 64 (2013).
- B.B. Kudrivavtsev, Sov. Phys. Acoust., 2, 36 (1956).
- T. Ramanujappa, J.A. Bhavani, E. Rajagopal and N.M. Murthy, J. Indian Pure Appl. Phys., 38, 301 (2000).
- R. Vodamalar, D. Mani and R. Balakrishanan, Res. J. Chem. Sci., 1, 79 (2011).
- S.Thirumanan and S.Sardha Devi, Arch. Appl. Sci. Res., 1, 128 (2009).
- A. Ali, K. Tiwari, A.K. Nain and V. Charkravarthy, Indian J. Phys., 74B, 351 (2000).
- D. Devadss, M. Thairiyaraja and L. Palaniappau, Indian J. Phys., 77B, 669 (2003).
- S. Thirumaran and K. Jayalakshmi, Arch. Appl. Sci. Res., 1, 24 (2009).
- P.S. Nikam and M. Hasan, Asian J. Chem., 5, 319 (1993).
- N. Prasad, J. Pure Appl. Ultrason., 25, 25 (2003).
- J.K. Das, S.K. Dash, N. Swain and B.B. Swain, J. Mol. Liq., 81, 163 (1999); doi:10.1016/S0167-7322(99)00065-3.
- G.S. Reddy, R.S. Reddy, M.M. Reddy and T.R. Kubendran, Der Pharma Chemica, 7, 74 (2015).
- K. Saravanakumar, R. Baskaran and T.R. Kubendran, J. Korean Chem. Soc., 56, 424 (2012); doi:10.5012/jkcs.2012.56.4.424.
- K.Saravanakumar, R.Baskaran and T.R.Kubendran, Orient. J. Chem., 27, 1073 (2011).
- G.S. Manukonda, P. Venkatalakshami and K. Rambabu, Int. J. Phys. Res., 3, 5 (2013).
- S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russ. J. Phys. Chem. A, 88, 1255 (2014); doi:10.1134/S003602441407005X.
- S.S. Raja and T.R. Kubendran, J. Chem. Eng. Data, 49, 421 (2004); doi:10.1021/je030133a.
- A.J. Treszczanowicz, O. Kiyohara and G.C. Benson, J. Chem. Thermodyn., 13, 253 (1981); doi:10.1016/0021-9614(81)90125-7.
- A. Roux and J. Desnoyers, Indian Acad. Proc. Chem. Soc., 98, 435 (1978).
- T.R. Kubendran and R. Baskaran, Int. J. Appl. Sci. Eng., 7, 43 (2008).
- C. Yang, H. Lai, Z. Liu and P. Ma, J. Chem. Eng. Data, 51, 1345 (2006); doi:10.1021/je0600808.
- T.R. Kubendran and R. Baskaran, Int. J. Appl. Sci. Eng., 8, 149 (2010).
- P.N. Tshibangu, S.N. Ndwandwe and E.D. Dikio, Int. J. Electrochem. Sci., 6, 2201 (2011).
- M. Shafiq, S.M. Asif and A. Farooqui, J. Biochem. Pharm. Res., 1, 419 (2011).
- S. Parveen, M. Yasmin, M. Gupta and J.P. Shukla, Int. J. Thermodyn., 13, 59 (2010); doi:10.5541/ijot.1034000282.
- G.S. Reddy, R.S. Reddy and M.M. Reddy, Der Pharma Chemica, 6, 135 (2014).
- G.S. Reddy and M.M. Reddy, Biochem. Physiol. Open Access, 4, 1 (2015); doi:10.4172/2168-9652.1000176.
References
S. Megremis, M. Chatziioannou and L. Tritou, J. Ultrasound Med., 129, 145 (2010).
G.S. Reddy and M.M. Reddy, J. Chem. Pharm. Res., 5, 644 (2013).
G.S. Reddy and M.M. Reddy, Int. J. Pharm. Bio. Sci., 5, 1064 (2014).
G.S. Reddy, M.M. Reddy and S. Chowdary, Asian J. Biochem. Pharm. Res., 4, 64 (2013).
B.B. Kudrivavtsev, Sov. Phys. Acoust., 2, 36 (1956).
T. Ramanujappa, J.A. Bhavani, E. Rajagopal and N.M. Murthy, J. Indian Pure Appl. Phys., 38, 301 (2000).
R. Vodamalar, D. Mani and R. Balakrishanan, Res. J. Chem. Sci., 1, 79 (2011).
S.Thirumanan and S.Sardha Devi, Arch. Appl. Sci. Res., 1, 128 (2009).
A. Ali, K. Tiwari, A.K. Nain and V. Charkravarthy, Indian J. Phys., 74B, 351 (2000).
D. Devadss, M. Thairiyaraja and L. Palaniappau, Indian J. Phys., 77B, 669 (2003).
S. Thirumaran and K. Jayalakshmi, Arch. Appl. Sci. Res., 1, 24 (2009).
P.S. Nikam and M. Hasan, Asian J. Chem., 5, 319 (1993).
N. Prasad, J. Pure Appl. Ultrason., 25, 25 (2003).
J.K. Das, S.K. Dash, N. Swain and B.B. Swain, J. Mol. Liq., 81, 163 (1999); doi:10.1016/S0167-7322(99)00065-3.
G.S. Reddy, R.S. Reddy, M.M. Reddy and T.R. Kubendran, Der Pharma Chemica, 7, 74 (2015).
K. Saravanakumar, R. Baskaran and T.R. Kubendran, J. Korean Chem. Soc., 56, 424 (2012); doi:10.5012/jkcs.2012.56.4.424.
K.Saravanakumar, R.Baskaran and T.R.Kubendran, Orient. J. Chem., 27, 1073 (2011).
G.S. Manukonda, P. Venkatalakshami and K. Rambabu, Int. J. Phys. Res., 3, 5 (2013).
S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russ. J. Phys. Chem. A, 88, 1255 (2014); doi:10.1134/S003602441407005X.
S.S. Raja and T.R. Kubendran, J. Chem. Eng. Data, 49, 421 (2004); doi:10.1021/je030133a.
A.J. Treszczanowicz, O. Kiyohara and G.C. Benson, J. Chem. Thermodyn., 13, 253 (1981); doi:10.1016/0021-9614(81)90125-7.
A. Roux and J. Desnoyers, Indian Acad. Proc. Chem. Soc., 98, 435 (1978).
T.R. Kubendran and R. Baskaran, Int. J. Appl. Sci. Eng., 7, 43 (2008).
C. Yang, H. Lai, Z. Liu and P. Ma, J. Chem. Eng. Data, 51, 1345 (2006); doi:10.1021/je0600808.
T.R. Kubendran and R. Baskaran, Int. J. Appl. Sci. Eng., 8, 149 (2010).
P.N. Tshibangu, S.N. Ndwandwe and E.D. Dikio, Int. J. Electrochem. Sci., 6, 2201 (2011).
M. Shafiq, S.M. Asif and A. Farooqui, J. Biochem. Pharm. Res., 1, 419 (2011).
S. Parveen, M. Yasmin, M. Gupta and J.P. Shukla, Int. J. Thermodyn., 13, 59 (2010); doi:10.5541/ijot.1034000282.
G.S. Reddy, R.S. Reddy and M.M. Reddy, Der Pharma Chemica, 6, 135 (2014).
G.S. Reddy and M.M. Reddy, Biochem. Physiol. Open Access, 4, 1 (2015); doi:10.4172/2168-9652.1000176.