Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Disinfection of Water Using Vortex Diode as Hydrodynamic Cavitation Reactor
Corresponding Author(s) : Vikrant Gaikwad
Asian Journal of Chemistry,
Vol. 28 No. 8 (2016): Vol 28 Issue 8
Abstract
Hydrodynamic cavitation offers distinct advantages for water disinfection and wastewater treatment particularly at large scales of operations. Vortex Diode is a fluidic device, which is conventionally used as a leaky non-return valve in nuclear industry. Recently this device was shown to be effective hydrodynamic cavitation device. In the present study, we have investigated use of cavitation in vortex diode for water disinfection application. Escherichia coli contaminated water is treated successfully using vortex diode. The operating parameters desirable for the disinfection are investigated. The performance is evaluated based on the reduction in the colony forming unit (CFU/mL) of E. coli count estimated by standard spread plate method. The presented results will be useful for identifying appropriate operating conditions for using vortex diode to effectively reduce the bacterial load and disinfect water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.V. Ranade and V.M. Bhandari, Industrial Wastewater Treatment, Recycle & Reuse, Elsevier, Amsterdam (2014).
- P.R. Gogate, J. Environ. Manage., 85, 801 (2007); doi:10.1016/j.jenvman.2007.07.001.
- S.S. Sawant, A.C. Anil, V. Krishnamurthy, C. Gaonkar, J. Kolwalkar, L. Khandeparker, D. Desai, A.V. Mahulkar, V.V. Ranade and A.B. Pandit, Biochem. Eng. J., 42, 320 (2008); doi:10.1016/j.bej.2008.08.001.
- A.A. Kulkarni, V.V. Ranade, R. Rajeev and S.B. Koganti, AIChE J., 54, 1139 (2008); doi:10.1002/aic.11439.
- M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Microbiology, McGraw-Hill Book Co, Singapore, edn 5 (1986).
- S. Arrojo, Y. Benito and A.M. Tarifa, Ultrason. Sonochem., 15, 903 (2008); doi:10.1016/j.ultsonch.2007.11.001.
- K.K. Jyoti and A.B. Pandit, Biochem. Eng. J., 7, 201 (2001); doi:10.1016/S1369-703X(00)00128-5.
- S.S. Save, A.B. Pandit and J.B. Joshi, Trans. Inst. Chem. Eng., 75, 41 (1997).
- A. Pandare and V.V. Ranade, Chem. Eng. Res. Des., 102, 274 (2015); doi:10.1016/j.cherd.2015.05.028.
References
V.V. Ranade and V.M. Bhandari, Industrial Wastewater Treatment, Recycle & Reuse, Elsevier, Amsterdam (2014).
P.R. Gogate, J. Environ. Manage., 85, 801 (2007); doi:10.1016/j.jenvman.2007.07.001.
S.S. Sawant, A.C. Anil, V. Krishnamurthy, C. Gaonkar, J. Kolwalkar, L. Khandeparker, D. Desai, A.V. Mahulkar, V.V. Ranade and A.B. Pandit, Biochem. Eng. J., 42, 320 (2008); doi:10.1016/j.bej.2008.08.001.
A.A. Kulkarni, V.V. Ranade, R. Rajeev and S.B. Koganti, AIChE J., 54, 1139 (2008); doi:10.1002/aic.11439.
M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Microbiology, McGraw-Hill Book Co, Singapore, edn 5 (1986).
S. Arrojo, Y. Benito and A.M. Tarifa, Ultrason. Sonochem., 15, 903 (2008); doi:10.1016/j.ultsonch.2007.11.001.
K.K. Jyoti and A.B. Pandit, Biochem. Eng. J., 7, 201 (2001); doi:10.1016/S1369-703X(00)00128-5.
S.S. Save, A.B. Pandit and J.B. Joshi, Trans. Inst. Chem. Eng., 75, 41 (1997).
A. Pandare and V.V. Ranade, Chem. Eng. Res. Des., 102, 274 (2015); doi:10.1016/j.cherd.2015.05.028.