Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Nickel Content on Carbon Anode Reactivity
Corresponding Author(s) : Liangying Wen
Asian Journal of Chemistry,
Vol. 28 No. 8 (2016): Vol 28 Issue 8
Abstract
In order to ascertain the impact of nickel content on carbon anode reactivity, different nickel content of carbon anodes were prepared with the single factor experimental method and test its reactivity in CO2 and air atmosphere respectively. The microstructure of carbon anodes and pitch cokes were tested by XRD. The pitch pyrolysis process was tested with TG-DTG method. The results show that the bulk density of carbon anode can be improved, the rate of residual and chalking of carbon anode can also be significantly improved, even a small increase in Ni content. Nickel can refine the crystallite size of carbon anode and pitch coke, promote the asphalt carbonization. Nickel can increase the apparent activation energy of asphalt pyrolysis process to 52.964 KJ/mol, increase the rate of pitch coke yield and reaction order is 4.7.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Charette, J. Ferland, D. Kocaefe, P. Couderc and J.L. Saint-Romain, Fuel, 69, 194 (1990); doi:10.1016/0016-2361(90)90173-N.
- J. Xiao, F.Q. Ding, J. Li, Z. Zou, Z. Zou, G.-R. Hu and Y.-X. Liu, Trans. Nonferrous Met. Soc. China, 13, 686 (2003).
- F. Liu, Y. Liu, U. Mannweiler and R. Perruchoud, Cent. South Univ. Technol., 13, 647 (2006); doi:10.1007/s11771-006-0009-5.
- D. Kocaefe, Y. Xie, Y. Kocaefe, L. Wei, S. Zou and A. Wu, J. Mater. Sci. Res., 2, 21 (2013); doi:10.5539/jmsr.v2n2p22.
- T. Xu and X. Huang, J. Anal. Appl. Pyrolysis, 87, 217 (2010); doi:10.1016/j.jaap.2009.12.008.
- G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik and O. Paris, Carbon, 44, 3239 (2006); doi:10.1016/j.carbon.2006.06.029.
- X. Cheng, Q. Zha, X. Li and X. Yang, Fuel Process. Technol., 89, 1436 (2008); doi:10.1016/j.fuproc.2008.07.003.
- Q. Lin, W. Su and Y. Xie, J. Anal. Appl. Pyrolysis, 86, 8 (2009); doi:10.1016/j.jaap.2009.03.001.
- C. Ren, T. Li, F. Song, X. Sun and Q. Lin, Mater. Lett., 60, 1570 (2006); doi:10.1016/j.matlet.2005.11.070.
- N. Miyajima, T. Akatsu, T. Ikoma, O. Ito, B. Rand, Y. Tanabe and E. Yasuda, Carbon, 38, 1831 (2000); doi:10.1016/S0008-6223(00)00022-1.
- Q. Lin, H. Tang, C. Li and L. Wu, J. Anal. Appl. Pyrolysis, 90, 1 (2011); doi:10.1016/j.jaap.2010.09.012.
- V. Zubkova, Fuel, 85, 1652 (2006); doi:10.1016/j.fuel.2006.03.006.
- W. Ciesińska, J. Zieliński and T. Brzozowska, J. Therm. Anal. Calorim., 95, 193 (2009); doi:10.1007/s10973-008-9090-3.
- Q. Lin, T. Li, Y. Ji, W. Wang and X. Wang, Fuel, 84, 177 (2005); doi:10.1016/j.fuel.2004.08.013.
- L. Sima, C. Blanco, R. Santamaría, M. Granda, H. Slaghuis and R. Menéndez, Fuel Process. Technol., 84, 63 (2003); doi:10.1016/S0378-3820(03)00046-8.
- Y.P. Wu, S. Fang, Y. Jiang and R. Holze, J. Power Sources, 108, 245 (2002); doi:10.1016/S0378-7753(02)00013-7.
- Y. Wu, S. Fang and Y. Jiang, J. Power Sources, 75, 167 (1998); doi:10.1016/S0378-7753(98)00047-0.
- J.S. Batista and B.I. Silveira, Mater. Res., 11, 387 (2008); doi:10.1590/S1516-14392008000300025.
- Z. Kuang, J. Thonstad and M. Sørlie, Carbon, 33, 1479 (1995); doi:10.1016/0008-6223(95)00102-J.
- K.N. Tran, A.J. Berkovich, A. Tomsett and S.K. Bhatia, Energy Fuels, 23, 1909 (2009); doi:10.1021/ef8009519.
References
A. Charette, J. Ferland, D. Kocaefe, P. Couderc and J.L. Saint-Romain, Fuel, 69, 194 (1990); doi:10.1016/0016-2361(90)90173-N.
J. Xiao, F.Q. Ding, J. Li, Z. Zou, Z. Zou, G.-R. Hu and Y.-X. Liu, Trans. Nonferrous Met. Soc. China, 13, 686 (2003).
F. Liu, Y. Liu, U. Mannweiler and R. Perruchoud, Cent. South Univ. Technol., 13, 647 (2006); doi:10.1007/s11771-006-0009-5.
D. Kocaefe, Y. Xie, Y. Kocaefe, L. Wei, S. Zou and A. Wu, J. Mater. Sci. Res., 2, 21 (2013); doi:10.5539/jmsr.v2n2p22.
T. Xu and X. Huang, J. Anal. Appl. Pyrolysis, 87, 217 (2010); doi:10.1016/j.jaap.2009.12.008.
G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik and O. Paris, Carbon, 44, 3239 (2006); doi:10.1016/j.carbon.2006.06.029.
X. Cheng, Q. Zha, X. Li and X. Yang, Fuel Process. Technol., 89, 1436 (2008); doi:10.1016/j.fuproc.2008.07.003.
Q. Lin, W. Su and Y. Xie, J. Anal. Appl. Pyrolysis, 86, 8 (2009); doi:10.1016/j.jaap.2009.03.001.
C. Ren, T. Li, F. Song, X. Sun and Q. Lin, Mater. Lett., 60, 1570 (2006); doi:10.1016/j.matlet.2005.11.070.
N. Miyajima, T. Akatsu, T. Ikoma, O. Ito, B. Rand, Y. Tanabe and E. Yasuda, Carbon, 38, 1831 (2000); doi:10.1016/S0008-6223(00)00022-1.
Q. Lin, H. Tang, C. Li and L. Wu, J. Anal. Appl. Pyrolysis, 90, 1 (2011); doi:10.1016/j.jaap.2010.09.012.
V. Zubkova, Fuel, 85, 1652 (2006); doi:10.1016/j.fuel.2006.03.006.
W. Ciesińska, J. Zieliński and T. Brzozowska, J. Therm. Anal. Calorim., 95, 193 (2009); doi:10.1007/s10973-008-9090-3.
Q. Lin, T. Li, Y. Ji, W. Wang and X. Wang, Fuel, 84, 177 (2005); doi:10.1016/j.fuel.2004.08.013.
L. Sima, C. Blanco, R. Santamaría, M. Granda, H. Slaghuis and R. Menéndez, Fuel Process. Technol., 84, 63 (2003); doi:10.1016/S0378-3820(03)00046-8.
Y.P. Wu, S. Fang, Y. Jiang and R. Holze, J. Power Sources, 108, 245 (2002); doi:10.1016/S0378-7753(02)00013-7.
Y. Wu, S. Fang and Y. Jiang, J. Power Sources, 75, 167 (1998); doi:10.1016/S0378-7753(98)00047-0.
J.S. Batista and B.I. Silveira, Mater. Res., 11, 387 (2008); doi:10.1590/S1516-14392008000300025.
Z. Kuang, J. Thonstad and M. Sørlie, Carbon, 33, 1479 (1995); doi:10.1016/0008-6223(95)00102-J.
K.N. Tran, A.J. Berkovich, A. Tomsett and S.K. Bhatia, Energy Fuels, 23, 1909 (2009); doi:10.1021/ef8009519.