Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Nanocomposites Based on Styrene Butadiene Rubber/Sepiolite
Corresponding Author(s) : Fazeelat Tahira
Asian Journal of Chemistry,
Vol. 28 No. 8 (2016): Vol 28 Issue 8
Abstract
Styrene butadiene rubber/sepiolite nanocomposites were prepared by melt mixing of styrene butadiene rubber (SBR) with filler vinyl triethoxy silane (VTES) modified sepiolite and co-agents trimethylolpropane trimethacrylate (TMPT) and trimethylolpropane triacrylate (ATMPT). The prepared nanocomposites showed improved thermal and mechanical properties attributed to stronger cross-linking between matrix and filler compared to the control samples. The FTIR measurements confirmed grafting of trimethylolpropane trimethacrylate on SBR and development of polymer filler interactions. The SEM images revealed a good cohesion between SBR and sepiolite. The DSC analysis revealed increase in melting temperature (Tm) and crystallization temperature (Tc) with sepiolite content due to heterogeneous nucleation effect during the cold crystallization. The XRD measurements specified that the molecular frameworks of sepiolite or SBR were unaffected and modifications involved only the surface groups. In summary, investigations suggested the substantial improved properties for nanocomposites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.C. Meneghett, Ph.D. Thesis, Synthesis and Properties of Rubber–Clay Nanocomposites, Case Western Reserve University, Cleveland, USA (2005).
- L. Zhang, Y. Wang, Y. Wang, Y. Sui and D. Yu, J. Appl. Polym. Sci., 78, 1873 (2000); doi:10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8.
- J. Ma, J. Xu, J.H. Ren, Z.Z. Yu and Y.W. Mai, Polym., 44, 4619 (2003); doi:10.1016/S0032-3861(03)00362-8.
- K.S. Maya, Ph.D. Thesis, Studies on in situ Precipitated Silica Filled Rubber Composites, Cochin University of Science and Technology, Cochin, India (2007).
- L.E. Yahaya, K.O. Adebowale, A.R.R. Menon and B.I. Olu-Owolabi, Am. J. Mater. Sci., 2, 1 (2012); doi:10.5923/j.materials.20120202.01.
- L.B. de Paiva, A.R. Morales and F.R. Valenzuela Díaz, Appl. Clay Sci., 42, 8 (2008); doi:10.1016/j.clay.2008.02.006.
- Y. Zheng, Y. Zheng, J. Appl. Polym. Sci., 99, 2163 (2006); doi:10.1002/app.22337.
- D.M. Moore and R.C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, edn 2, p. 378 (1997).
- M. Alvarado, R.C. Chianelli and R.M. Arrowood, Bioinorg. Chem. Appl., 2012, 1 (2012); doi:10.1155/2012/672562.
- K. Brauner and A. Preisinger, Tsch. Miner. Petr. Mitt., 6, 120 (1956); doi:10.1007/BF01128033.
- M. Galimberti, V. Cipolletti and S. Giudice, In Rubber Clay Nanocomposites-Science, Technology and Applications, Chapter 7, In: Morphology of Rubber Clay Nanocomposites, Wiley & Sons, New York, p. 181 (2011).
- Y.P. Wu, Y. Ma, Y.Q. Wang and L.Q. Zhang, Macromol. Mater. Eng., 289, 890 (2004); doi:10.1002/mame.200400085.
- S.K. Kim, J.-H. Kang, Y. Choe and Y.-W. Chang, Macromol. Res., 14, 187 (2006); doi:10.1007/BF03218507.
- J. Wang and D. Chen, J. Nanomater., Article ID 496584 (2013); doi:10.1155/2013/496584.
- L. Bokobza, A. Burr, G. Garnaud, M.Y. Perrin and S. Pagnotta, Polym. Int., 53, 1060 (2004); doi:10.1002/pi.1489.
- J.K. Duan, C. Kim and P.K. Jiang, Polym. Compos., 31, 347 (2010); doi:10.1002/pc.20812.
- J.K. Duan, C. Kim and P.K. Jiang, J. Polym. Res., 16, 45 (2009); doi:10.1007/s10965-008-9201-7.
- A. Chandra, S. Gong, M. Yuan, L.-S. Turng, P. Gramann and H. Cordes, Polym. Eng. Sci., 45, 52 (2005); doi:10.1002/pen.20229.
- F. Bergaya, B. Theng and G. Lagaly, Handbook of Clay Science, Elsevier, Amsterdam, p. 1224 (2006).
- N. Herrera, J.M. Letoffe, J.L. Putaux, L. David and B.L. Elodie, Langmuir, 20, 1564 (2004); doi:10.1021/la0349267.
- M. Shafiq, T. Yasin and S. Saeed, J. Appl. Polym. Sci., 123, 1718 (2012); doi:10.1002/app.34633.
- I. Ahmad, M. Shafiq and T. Yasin, J. Appl. Polym. Sci., 128, 2236 (2013); doi:10.1002/app.38293.
- ASTM D3182–07, Standard Practice for Rubber – Materials, Equipments and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets, 09.01 (2012).
- ASTM D3184, Standard Practice for Rubber–Evaluation of NR (Natural Rubber), 09.01 (2011).
- ASTM D412–06a, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers–Tension, 09.01 (2013).
- ASTM D2240 –05, Standard Test Method for Rubber Property–Durometer Hardness, 09.01 (2010).
- J.D. Russell, in ed.: M.J. Wilson, Infrared Methods, In: Handbook of Determinative Methods in Clay Mineralogy, Chapman & Hall, New York (1987
- R.L. Frost, O.B. Locos, H. Ruan and J.T. Kloprogge, Vib. Spectrosc., 27, 1 (2001); doi:10.1016/S0924-2031(01)00110-2; J. Cornejo and M.C. Hermosin, Clay Miner., 23, 391 (1988); doi:10.1180/claymin.1988.023.4.06.
- S. Caillers and S. Henin, in ed.: G. Brow, Sepiolite, In The X-Ray Identification and Crystal Structure of Clay Minerals, The Minerological Society of London, Chap. 8, p. 325 (1961).
- D.M. Moore and D.C. Reynold, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press: New York, edn 2, p. 378 (1997).
- A. Singer, in eds.: J.B. Dixon and S.B. Weed, Palygorskate and Sepiolite Group Minerals, In: Minerals in Soil Environments, Soil Science Society of America: Madison, WI, USA, edn 2, p. 829 (1989).
References
P.C. Meneghett, Ph.D. Thesis, Synthesis and Properties of Rubber–Clay Nanocomposites, Case Western Reserve University, Cleveland, USA (2005).
L. Zhang, Y. Wang, Y. Wang, Y. Sui and D. Yu, J. Appl. Polym. Sci., 78, 1873 (2000); doi:10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8.
J. Ma, J. Xu, J.H. Ren, Z.Z. Yu and Y.W. Mai, Polym., 44, 4619 (2003); doi:10.1016/S0032-3861(03)00362-8.
K.S. Maya, Ph.D. Thesis, Studies on in situ Precipitated Silica Filled Rubber Composites, Cochin University of Science and Technology, Cochin, India (2007).
L.E. Yahaya, K.O. Adebowale, A.R.R. Menon and B.I. Olu-Owolabi, Am. J. Mater. Sci., 2, 1 (2012); doi:10.5923/j.materials.20120202.01.
L.B. de Paiva, A.R. Morales and F.R. Valenzuela Díaz, Appl. Clay Sci., 42, 8 (2008); doi:10.1016/j.clay.2008.02.006.
Y. Zheng, Y. Zheng, J. Appl. Polym. Sci., 99, 2163 (2006); doi:10.1002/app.22337.
D.M. Moore and R.C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, edn 2, p. 378 (1997).
M. Alvarado, R.C. Chianelli and R.M. Arrowood, Bioinorg. Chem. Appl., 2012, 1 (2012); doi:10.1155/2012/672562.
K. Brauner and A. Preisinger, Tsch. Miner. Petr. Mitt., 6, 120 (1956); doi:10.1007/BF01128033.
M. Galimberti, V. Cipolletti and S. Giudice, In Rubber Clay Nanocomposites-Science, Technology and Applications, Chapter 7, In: Morphology of Rubber Clay Nanocomposites, Wiley & Sons, New York, p. 181 (2011).
Y.P. Wu, Y. Ma, Y.Q. Wang and L.Q. Zhang, Macromol. Mater. Eng., 289, 890 (2004); doi:10.1002/mame.200400085.
S.K. Kim, J.-H. Kang, Y. Choe and Y.-W. Chang, Macromol. Res., 14, 187 (2006); doi:10.1007/BF03218507.
J. Wang and D. Chen, J. Nanomater., Article ID 496584 (2013); doi:10.1155/2013/496584.
L. Bokobza, A. Burr, G. Garnaud, M.Y. Perrin and S. Pagnotta, Polym. Int., 53, 1060 (2004); doi:10.1002/pi.1489.
J.K. Duan, C. Kim and P.K. Jiang, Polym. Compos., 31, 347 (2010); doi:10.1002/pc.20812.
J.K. Duan, C. Kim and P.K. Jiang, J. Polym. Res., 16, 45 (2009); doi:10.1007/s10965-008-9201-7.
A. Chandra, S. Gong, M. Yuan, L.-S. Turng, P. Gramann and H. Cordes, Polym. Eng. Sci., 45, 52 (2005); doi:10.1002/pen.20229.
F. Bergaya, B. Theng and G. Lagaly, Handbook of Clay Science, Elsevier, Amsterdam, p. 1224 (2006).
N. Herrera, J.M. Letoffe, J.L. Putaux, L. David and B.L. Elodie, Langmuir, 20, 1564 (2004); doi:10.1021/la0349267.
M. Shafiq, T. Yasin and S. Saeed, J. Appl. Polym. Sci., 123, 1718 (2012); doi:10.1002/app.34633.
I. Ahmad, M. Shafiq and T. Yasin, J. Appl. Polym. Sci., 128, 2236 (2013); doi:10.1002/app.38293.
ASTM D3182–07, Standard Practice for Rubber – Materials, Equipments and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets, 09.01 (2012).
ASTM D3184, Standard Practice for Rubber–Evaluation of NR (Natural Rubber), 09.01 (2011).
ASTM D412–06a, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers–Tension, 09.01 (2013).
ASTM D2240 –05, Standard Test Method for Rubber Property–Durometer Hardness, 09.01 (2010).
J.D. Russell, in ed.: M.J. Wilson, Infrared Methods, In: Handbook of Determinative Methods in Clay Mineralogy, Chapman & Hall, New York (1987
R.L. Frost, O.B. Locos, H. Ruan and J.T. Kloprogge, Vib. Spectrosc., 27, 1 (2001); doi:10.1016/S0924-2031(01)00110-2; J. Cornejo and M.C. Hermosin, Clay Miner., 23, 391 (1988); doi:10.1180/claymin.1988.023.4.06.
S. Caillers and S. Henin, in ed.: G. Brow, Sepiolite, In The X-Ray Identification and Crystal Structure of Clay Minerals, The Minerological Society of London, Chap. 8, p. 325 (1961).
D.M. Moore and D.C. Reynold, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press: New York, edn 2, p. 378 (1997).
A. Singer, in eds.: J.B. Dixon and S.B. Weed, Palygorskate and Sepiolite Group Minerals, In: Minerals in Soil Environments, Soil Science Society of America: Madison, WI, USA, edn 2, p. 829 (1989).