Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis, Characterization and Antimicrobial Activity Studies of Curcumin Aniline Functionalized Iron Oxide Nanoparticles
Corresponding Author(s) : M. Muhamed Haneefa
Asian Journal of Chemistry,
Vol. 28 No. 8 (2016): Vol 28 Issue 8
Abstract
We report the synthesis and characterization of biofunctionalized iron oxide nanoparticles by interacting with curcumin aniline and its antimicrobial activity studies against standard bacterial and fungal pathogens. Firstly, iron oxide nanoparticles and curcumin aniline were synthesized separately and finally biofunctionalization process was carried out to get the deserved product. The whole process was performed in the green process method by using plant materials. Synthesized materials were characterized by UV-visible, FT-IR, SEM and TEM analysis. Antibacterial and antifungal tests were carried out against S. aureus, B. subtilis, E. coli, S. typhi bacterial species and C. albicans, C. lunata, A. niger, T. simii fungal species. Comparative studies of iron oxide nanoparticles with biofunctionalized form were carried out in every aspects and proved the efficiency of biofunctionalized iron oxide nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Lisiecki, F. Billoudet and M.P. Pileni, J. Phys. Chem., 100, 4160 (1996); doi:10.1021/jp9523837.
- A. Hütten, D. Sudfeld, I. Ennen, G. Reiss, W. Hachmann, U. Heinzmann, K. Wojczykowski, P. Jutzi, W. Saikaly and G. Thomas, J. Biotechnol., 112, 47 (2004); doi:10.1016/j.jbiotec.2004.04.019.
- J. Tucek, R. Zboril and D. Petridis, J. Nanosci. Nanotechnol., 6, 926 (2006); doi:10.1166/jnn.2006.183.
- K. Abhilash, K. Revati and B.D. Pandey, Bull. Mater. Sci., 34, 191 (2011); doi:10.1007/s12034-011-0076-6.
- R.W. Siegel, in eds.: R.W. Siegel, E. Hu and M.C. Roco, Nanostructure Science and Technology, WTEC, Loyola College in Maryland (1999).
- J.L. Zhang, Y. Wang, H. Ji, Y.G. Wei, N.Z. Wu, B.J. Zuo and Q. Wang, J. Catal., 229, 114 (2005); doi:10.1016/j.jcat.2004.09.029.
- M. Cao, Z. Li, J. Wang, W. Ge, T. Yue, R. Li, V.L. Colvin and W.W. Yu, Trends Food Sci. Technol., 27, 47 (2012); doi:10.1016/j.tifs.2012.04.003.
- A.K. Gupta and M. Gupta, Biomaterials, 26, 3995 (2005); doi:10.1016/j.biomaterials.2004.10.012.
- J. Guo, R. Wang, W.W. Tjiu, J. Pan and T. Liu, J. Hazard. Mater., 225–226, 63 (2012); doi:10.1016/j.jhazmat.2012.04.065.
- A. Sunitha, R.S. Rimal Isaac, G. Sweetly, S. Sornalekshmi, R. Arsula and P.K. Praseetha, Nano Biomed. Eng. (N.Y.), 5, 39 (2013).
- Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl and G.V. Lowry, Environ. Sci. Technol., 39, 1338 (2005); doi:10.1021/es049195r.
- M. Forough and K. Farhad, Turkish J. Eng. Environ. Sci., 34, 281 (2010); doi:10.3906/muh-1005-30.
- H.A. Salam, P. Rajiv, M. Kamaraj, P. Jagadeeswaran, S. Gunalan and R. Sivaraj, Int. J. Biol. Sci., 1, 85 (2012).
- S.R. Senthilkumar and T. Sivakumar, Int. J. Pharmacy Pharm.. Sci., 6, 461 (2014).
- O. Benavente-García, J. Castillo, F.R. Marin, A. Ortuño and J.A. Del Río, J. Agric. Food Chem., 45, 4505 (1997); doi:10.1021/jf970373s.
- J.A. Vinson, X. Su, L. Zubik and P. Bose, J. Agric. Food Chem., 49, 5315 (2001); doi:10.1021/jf0009293.
- O. Gulsen and M.L. Roose, J. Am. Soc. Hort. Sci., 126, 309 (2001).
- S.N. Nisha, O.S. Aysha, J.S.N. Rahaman, P. Vinoth Kumar, S. Valli, P. Nirmala and A. Reena, Spectrochim. Acta A, 124, 194 (2014); doi:10.1016/j.saa.2013.12.019.
- Lemon Power, California Energy Commission, Retrieved from https://en.wikipedia.org/wiki/Lemon, December 7, 2014.
- A. Rauf, G. Uddin and J. Ali, Org. Med. Chem. Lett., 4, 5 (2014); doi:10.1186/2191-2858-4-5.
- P. Rao, M.S. Chandraprasad, Y.N. Lakshmi, J. Rao, P. Aishwarya and S. Srinidhi, Int. J. Multidisciplinary Curr. Res., 2, 165 (2014).
- M. Jayandran, M.M. Haneefa and V. Balasubramanian, J. Chem. Pharm. Res., 7, 251 (2015).
- B. Mohapatra, K. Reena, J. Singh, S. Kuriakose and S. Mohapatra, Adv. Mater. Lett., 6, 228 (2015); doi:10.5185/amlett.2015.5731.
- S.A. Mahdy, Q.J. Raheed and P.T. Kalaichelvan, Int. J. Modern Eng. Res., 2, 578 (2012).
- Z. Liu, F. Kiessling and J. Gatjens, J. Nanomater., Article ID 894303 (2010); doi:10.1155/2010/894303.
- S. Challa Kumar, in eds.: S.S. Sahay and S. Majumdar, Biofunctionalization of Nanomaterials, ed. Wiley-VCH Verlaf GmbH & Co., KGaA, edn 24, pp. 398-399 (2009).
- H. Ju, X. Zhang and J. Wang, NanoBiosensing: Principles, Development and Application, Biofunctionalization of Nanomaterials, In: Biological and Medical Physics, Biomedical Engineering, Springer, New York, pp. 1-38 (2011).
- H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed., 49, 1362 (2010); doi:10.1002/anie.200903053.
- O. Veiseh, J.W. Gunn and M.Q. Zhang, Adv. Drug Deliv. Rev., 62, 284 (2010); doi:10.1016/j.addr.2009.11.002.
- M.C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004); doi:10.1021/cr030698+.
- B.B. Aggarwal, I.D. Bhat, B.B. Bhatt, H. Ichikawa, K.S. Ahn, G.S.S.K. Sethi, S.K. Sandur, C. Sundaram, N. Seeram and S. Shishodia, in eds.: P.N. Ravindran, K.N. Babu and K. Sivaraman, Curcumin-Biological and Medicinal Properties; In: Turmeric: The Genus Curcuma, CRC Press, p. 297 (2006).
- D. Eigner and D. Scholz, J. Ethnopharmacol., 67, 1 (1999); doi:10.1016/S0378-8741(98)00234-7.
- B. Wahlstrom and G. Blennow, Acta Pharmacol. Toxicol., 43, 86 (1978); doi:10.1111/j.1600-0773.1978.tb02240.x.
- R.C. Lantz, G.J. Chen, A.M. Solyom, S.D. Jolad and B.N. Timmermann, Phytomedicine, 12, 445 (2005); doi:10.1016/j.phymed.2003.12.011.
- B.B. Aggarwal, C. Sundaram, N. Malani and H. Ichikawa, Adv. Exp. Med. Biol., 595, 1 (2007); doi:10.1007/978-0-387-46401-5_1.
- P. Anand, A.B. Kunnumakkara, R.A. Newman and B.B. Aggarwal, Mol. Pharm., 4, 807 (2007); doi:10.1021/mp700113r.
- R.K. Basniwal, H.S. Buttar, V.K. Jain and N. Jain, J. Agric. Food Chem., 59, 2056 (2011); doi:10.1021/jf104402t.
- D. Ghosh, S.T. Choudhury, S. Ghosh, A.K. Mandal, S. Sarkar, A. Ghosh, K.D. Saha and N. Das, Chem. Biol. Interact., 195, 206 (2012); doi:10.1016/j.cbi.2011.12.004.
- M.M. Haneefa, M. Jayandran, B. Anand, V. Balasubramanian and S. Muthumariappan, Int. J. Nat. Prod. Res., 4, 82 (2014).
- M. Jayandran, M.M. Haneefa and V. Balasubramanian, Int. J. Chem. Nat. Sci., 2, 157 (2014).
- R.W. Bauer, M.D. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).
- B.P.F.A. Gomes, C.C.R. Ferraz, M.E. Vianna, P.L. Rosalen, A.A. Zaia, F.B. Teixeira and F.J. Souza-Filho, Braz. Dent. J., 13, 155 (2002); doi:10.1590/S0103-64402002000300002.
- W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008): doi:10.1007/s11671-008-9174-9.
References
I. Lisiecki, F. Billoudet and M.P. Pileni, J. Phys. Chem., 100, 4160 (1996); doi:10.1021/jp9523837.
A. Hütten, D. Sudfeld, I. Ennen, G. Reiss, W. Hachmann, U. Heinzmann, K. Wojczykowski, P. Jutzi, W. Saikaly and G. Thomas, J. Biotechnol., 112, 47 (2004); doi:10.1016/j.jbiotec.2004.04.019.
J. Tucek, R. Zboril and D. Petridis, J. Nanosci. Nanotechnol., 6, 926 (2006); doi:10.1166/jnn.2006.183.
K. Abhilash, K. Revati and B.D. Pandey, Bull. Mater. Sci., 34, 191 (2011); doi:10.1007/s12034-011-0076-6.
R.W. Siegel, in eds.: R.W. Siegel, E. Hu and M.C. Roco, Nanostructure Science and Technology, WTEC, Loyola College in Maryland (1999).
J.L. Zhang, Y. Wang, H. Ji, Y.G. Wei, N.Z. Wu, B.J. Zuo and Q. Wang, J. Catal., 229, 114 (2005); doi:10.1016/j.jcat.2004.09.029.
M. Cao, Z. Li, J. Wang, W. Ge, T. Yue, R. Li, V.L. Colvin and W.W. Yu, Trends Food Sci. Technol., 27, 47 (2012); doi:10.1016/j.tifs.2012.04.003.
A.K. Gupta and M. Gupta, Biomaterials, 26, 3995 (2005); doi:10.1016/j.biomaterials.2004.10.012.
J. Guo, R. Wang, W.W. Tjiu, J. Pan and T. Liu, J. Hazard. Mater., 225–226, 63 (2012); doi:10.1016/j.jhazmat.2012.04.065.
A. Sunitha, R.S. Rimal Isaac, G. Sweetly, S. Sornalekshmi, R. Arsula and P.K. Praseetha, Nano Biomed. Eng. (N.Y.), 5, 39 (2013).
Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl and G.V. Lowry, Environ. Sci. Technol., 39, 1338 (2005); doi:10.1021/es049195r.
M. Forough and K. Farhad, Turkish J. Eng. Environ. Sci., 34, 281 (2010); doi:10.3906/muh-1005-30.
H.A. Salam, P. Rajiv, M. Kamaraj, P. Jagadeeswaran, S. Gunalan and R. Sivaraj, Int. J. Biol. Sci., 1, 85 (2012).
S.R. Senthilkumar and T. Sivakumar, Int. J. Pharmacy Pharm.. Sci., 6, 461 (2014).
O. Benavente-García, J. Castillo, F.R. Marin, A. Ortuño and J.A. Del Río, J. Agric. Food Chem., 45, 4505 (1997); doi:10.1021/jf970373s.
J.A. Vinson, X. Su, L. Zubik and P. Bose, J. Agric. Food Chem., 49, 5315 (2001); doi:10.1021/jf0009293.
O. Gulsen and M.L. Roose, J. Am. Soc. Hort. Sci., 126, 309 (2001).
S.N. Nisha, O.S. Aysha, J.S.N. Rahaman, P. Vinoth Kumar, S. Valli, P. Nirmala and A. Reena, Spectrochim. Acta A, 124, 194 (2014); doi:10.1016/j.saa.2013.12.019.
Lemon Power, California Energy Commission, Retrieved from https://en.wikipedia.org/wiki/Lemon, December 7, 2014.
A. Rauf, G. Uddin and J. Ali, Org. Med. Chem. Lett., 4, 5 (2014); doi:10.1186/2191-2858-4-5.
P. Rao, M.S. Chandraprasad, Y.N. Lakshmi, J. Rao, P. Aishwarya and S. Srinidhi, Int. J. Multidisciplinary Curr. Res., 2, 165 (2014).
M. Jayandran, M.M. Haneefa and V. Balasubramanian, J. Chem. Pharm. Res., 7, 251 (2015).
B. Mohapatra, K. Reena, J. Singh, S. Kuriakose and S. Mohapatra, Adv. Mater. Lett., 6, 228 (2015); doi:10.5185/amlett.2015.5731.
S.A. Mahdy, Q.J. Raheed and P.T. Kalaichelvan, Int. J. Modern Eng. Res., 2, 578 (2012).
Z. Liu, F. Kiessling and J. Gatjens, J. Nanomater., Article ID 894303 (2010); doi:10.1155/2010/894303.
S. Challa Kumar, in eds.: S.S. Sahay and S. Majumdar, Biofunctionalization of Nanomaterials, ed. Wiley-VCH Verlaf GmbH & Co., KGaA, edn 24, pp. 398-399 (2009).
H. Ju, X. Zhang and J. Wang, NanoBiosensing: Principles, Development and Application, Biofunctionalization of Nanomaterials, In: Biological and Medical Physics, Biomedical Engineering, Springer, New York, pp. 1-38 (2011).
H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed., 49, 1362 (2010); doi:10.1002/anie.200903053.
O. Veiseh, J.W. Gunn and M.Q. Zhang, Adv. Drug Deliv. Rev., 62, 284 (2010); doi:10.1016/j.addr.2009.11.002.
M.C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004); doi:10.1021/cr030698+.
B.B. Aggarwal, I.D. Bhat, B.B. Bhatt, H. Ichikawa, K.S. Ahn, G.S.S.K. Sethi, S.K. Sandur, C. Sundaram, N. Seeram and S. Shishodia, in eds.: P.N. Ravindran, K.N. Babu and K. Sivaraman, Curcumin-Biological and Medicinal Properties; In: Turmeric: The Genus Curcuma, CRC Press, p. 297 (2006).
D. Eigner and D. Scholz, J. Ethnopharmacol., 67, 1 (1999); doi:10.1016/S0378-8741(98)00234-7.
B. Wahlstrom and G. Blennow, Acta Pharmacol. Toxicol., 43, 86 (1978); doi:10.1111/j.1600-0773.1978.tb02240.x.
R.C. Lantz, G.J. Chen, A.M. Solyom, S.D. Jolad and B.N. Timmermann, Phytomedicine, 12, 445 (2005); doi:10.1016/j.phymed.2003.12.011.
B.B. Aggarwal, C. Sundaram, N. Malani and H. Ichikawa, Adv. Exp. Med. Biol., 595, 1 (2007); doi:10.1007/978-0-387-46401-5_1.
P. Anand, A.B. Kunnumakkara, R.A. Newman and B.B. Aggarwal, Mol. Pharm., 4, 807 (2007); doi:10.1021/mp700113r.
R.K. Basniwal, H.S. Buttar, V.K. Jain and N. Jain, J. Agric. Food Chem., 59, 2056 (2011); doi:10.1021/jf104402t.
D. Ghosh, S.T. Choudhury, S. Ghosh, A.K. Mandal, S. Sarkar, A. Ghosh, K.D. Saha and N. Das, Chem. Biol. Interact., 195, 206 (2012); doi:10.1016/j.cbi.2011.12.004.
M.M. Haneefa, M. Jayandran, B. Anand, V. Balasubramanian and S. Muthumariappan, Int. J. Nat. Prod. Res., 4, 82 (2014).
M. Jayandran, M.M. Haneefa and V. Balasubramanian, Int. J. Chem. Nat. Sci., 2, 157 (2014).
R.W. Bauer, M.D. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).
B.P.F.A. Gomes, C.C.R. Ferraz, M.E. Vianna, P.L. Rosalen, A.A. Zaia, F.B. Teixeira and F.J. Souza-Filho, Braz. Dent. J., 13, 155 (2002); doi:10.1590/S0103-64402002000300002.
W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008): doi:10.1007/s11671-008-9174-9.