Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Multi-Walled Carbon Nanotubes from Iraqi Natural Gas/CO Mixture by Catalytic Flame Fragments Deposition Method
Corresponding Author(s) : Falah H. Hussein
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Multi-walled carbon nanotubes (MWNTs) were synthesized from Iraqis natural gas using flame under carbon monoxide atmosphere. The study focuses on abilities to synthesis and characterization of carbon nanotubes (CNTs) using simple, easy, low cost by natural material. The reactor has been designed for synthesis of carbon nanotubes CNTs from natural gas which acted as a source of carbon in addition to supplying thermal energy instead of electrical energy. Crystallographic and morphological of CNTs have been characterized using powder X-ray diffraction, Raman spectroscopy, transmission electron microscope and thermal gravimetric analysis. The analysis refers to synthesized MWNTs with purity 57.80 % and outer diameter 6.6-17.9 nm, inner diameter 3.2-6.3 nm which equal to 3-9 of graphene layers while the length of tubes is 0.8 to 2 μm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Che, H. Chen, H. Gui, J. Liu, B. Liu and C. Zhou, Semicond. Sci. Technol., 29, 073001 (2014); https://doi.org/10.1088/0268-1242/29/7/073001.
- A. Bianco, K. Kostarelos and M. Prato, Curr. Opin. Chem. Biol., 9, 674 (2005); https://doi.org/10.1016/j.cbpa.2005.10.005.
- Y.T. Ong, A.L. Ahmad, S.H.S. Zein and S.H. Tan, Braz. J. Chem. Eng., 27, 227 (2010); https://doi.org/10.1590/S0104-66322010000200002.
- K. Tanaka and S. Iijima, Carbon Nanotubes and Graphene, Elsevier, edn 2 (2014).
- V. Popov, Mater. Sci. Eng. Rep., 43, 61 (2004); https://doi.org/10.1016/j.mser.2003.10.001.
- K. Xia, H. Zhan and Y. Gu, Procedia IUTAM, 21, 94 (2017); https://doi.org/10.1016/j.piutam.2017.03.042.
- B. Hall, C. Zhuo, Y.A. Levendis and H. Richter, Carbon, 49, 3412 (2011); https://doi.org/10.1016/j.carbon.2011.04.036.
- R.L. Vander Wal, T.M. Ticich and V.E. Curtis, Carbon, 39, 2277 (2001); https://doi.org/10.1016/S0008-6223(01)00047-1.
- P. Reilly and W. Whitten, Carbon, 44, 1653 (2006); https://doi.org/10.1016/j.carbon.2006.01.018.
- J.B. Howard, J.T. McKinnon, Y. Makarovsky, A.L. Lafleur and M.E. Johnson, Nature, 352, 139 (1991); https://doi.org/10.1038/352139a0.
- A.E. Awadallah, S.M. Abdel-Hamid, D.S. El-Desouki, A.A. AboulEnein and A.K. Aboul-Gheit, Egypt. J. Petr., 21, 101 (2012); https://doi.org/10.1016/j.ejpe.2012.11.005.
- R. Bonadiman, M.D. Lima, M.J. De Andrade and C.P. Bergmann, J. Mater. Sci., 41, 7288 (2006); https://doi.org/10.1007/s10853-006-0938-2.
- J.J. Bang, P.A. Guerrero, D.A. Lopez, L.E. Murr and E.V. Esquivel, J. Nano. Nanotech., 4, 716 (2004); https://doi.org/10.1166/jnn.2004.095.
- F.H. Abdulrazzak, S.K. Esmail, H.A. Dawod, A.M. Abbas and M.K.K. Almaliki, Int. J. Theo. Appl. Sci., 8, 37 (2016).
- S. Costa, E. Palen, M. Kruszynsky, A. Bachimatiuk and R. Kalenczuk, Mater. Sci. Poland, 26, 433 (2008).
- A. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000); https://doi.org/10.1103/PhysRevB.61.14095.
- S. Abbasi, S.M. Zebarjad and S.H. Noie-Baghban, Engineering, 5, 207 (2013); https://doi.org/10.4236/eng.2013.52030.
- X. Zeng, S. Yu, L. Ye, M. Li, Z. Pan, R. Sun and J. Xu, J. Mater. Chem. C, 3, 187 (2015); https://doi.org/10.1039/C4TC01051E.
- M. Nazhipkyzy, B.T. Lesbaev, N.G. Prikhodko, Z.A. Mansurov and R.R. Nemkaeva, Univ. J. Appl. Sci., 3, 17 (2015).
- A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono and J.B. Nagy, Materials, 3, 3092 (2010); https://doi.org/10.3390/ma3053092.
- V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012.
- E. Ordoñez-Casanova, M. Román-Aguirre, A. Aguilar-Elguezabal and F. Espinosa-Magaña, Mater., 6, 2534 (2013); https://doi.org/10.3390/ma6062534.
- A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor and M. Rusop, Mater. Lett., 63, 2704 (2009); https://doi.org/10.1016/j.matlet.2009.09.048.
- P. Jagdale, M. Sharon, G. Kalita, N.M.N. Maldar and M. Sharon, Adv. Mater. Phys. Chem., 2, 1 (2012); https://doi.org/10.4236/ampc.2012.21001.
- F.W. Geurts and J.A. Sacco Jr., Carbon, 30, 415 (1992); https://doi.org/10.1016/0008-6223(92)90039-Y.
- H. Endo, K. Kuwana, K. Saito, D. Qian, R. Andrews and E.A. Grulke, Chem. Phys. Lett., 387, 307 (2004); https://doi.org/10.1016/j.cplett.2004.01.124.
- A.M. Jassm, F.H. Hussein, F.H. Abdulrazzak, A.F. Alkaim and B.A. Joda, Asian J. Chem., 29, 2804 (2017); https://doi.org/10.14233/ajchem.2017.20994.
References
Y. Che, H. Chen, H. Gui, J. Liu, B. Liu and C. Zhou, Semicond. Sci. Technol., 29, 073001 (2014); https://doi.org/10.1088/0268-1242/29/7/073001.
A. Bianco, K. Kostarelos and M. Prato, Curr. Opin. Chem. Biol., 9, 674 (2005); https://doi.org/10.1016/j.cbpa.2005.10.005.
Y.T. Ong, A.L. Ahmad, S.H.S. Zein and S.H. Tan, Braz. J. Chem. Eng., 27, 227 (2010); https://doi.org/10.1590/S0104-66322010000200002.
K. Tanaka and S. Iijima, Carbon Nanotubes and Graphene, Elsevier, edn 2 (2014).
V. Popov, Mater. Sci. Eng. Rep., 43, 61 (2004); https://doi.org/10.1016/j.mser.2003.10.001.
K. Xia, H. Zhan and Y. Gu, Procedia IUTAM, 21, 94 (2017); https://doi.org/10.1016/j.piutam.2017.03.042.
B. Hall, C. Zhuo, Y.A. Levendis and H. Richter, Carbon, 49, 3412 (2011); https://doi.org/10.1016/j.carbon.2011.04.036.
R.L. Vander Wal, T.M. Ticich and V.E. Curtis, Carbon, 39, 2277 (2001); https://doi.org/10.1016/S0008-6223(01)00047-1.
P. Reilly and W. Whitten, Carbon, 44, 1653 (2006); https://doi.org/10.1016/j.carbon.2006.01.018.
J.B. Howard, J.T. McKinnon, Y. Makarovsky, A.L. Lafleur and M.E. Johnson, Nature, 352, 139 (1991); https://doi.org/10.1038/352139a0.
A.E. Awadallah, S.M. Abdel-Hamid, D.S. El-Desouki, A.A. AboulEnein and A.K. Aboul-Gheit, Egypt. J. Petr., 21, 101 (2012); https://doi.org/10.1016/j.ejpe.2012.11.005.
R. Bonadiman, M.D. Lima, M.J. De Andrade and C.P. Bergmann, J. Mater. Sci., 41, 7288 (2006); https://doi.org/10.1007/s10853-006-0938-2.
J.J. Bang, P.A. Guerrero, D.A. Lopez, L.E. Murr and E.V. Esquivel, J. Nano. Nanotech., 4, 716 (2004); https://doi.org/10.1166/jnn.2004.095.
F.H. Abdulrazzak, S.K. Esmail, H.A. Dawod, A.M. Abbas and M.K.K. Almaliki, Int. J. Theo. Appl. Sci., 8, 37 (2016).
S. Costa, E. Palen, M. Kruszynsky, A. Bachimatiuk and R. Kalenczuk, Mater. Sci. Poland, 26, 433 (2008).
A. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000); https://doi.org/10.1103/PhysRevB.61.14095.
S. Abbasi, S.M. Zebarjad and S.H. Noie-Baghban, Engineering, 5, 207 (2013); https://doi.org/10.4236/eng.2013.52030.
X. Zeng, S. Yu, L. Ye, M. Li, Z. Pan, R. Sun and J. Xu, J. Mater. Chem. C, 3, 187 (2015); https://doi.org/10.1039/C4TC01051E.
M. Nazhipkyzy, B.T. Lesbaev, N.G. Prikhodko, Z.A. Mansurov and R.R. Nemkaeva, Univ. J. Appl. Sci., 3, 17 (2015).
A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono and J.B. Nagy, Materials, 3, 3092 (2010); https://doi.org/10.3390/ma3053092.
V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012.
E. Ordoñez-Casanova, M. Román-Aguirre, A. Aguilar-Elguezabal and F. Espinosa-Magaña, Mater., 6, 2534 (2013); https://doi.org/10.3390/ma6062534.
A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor and M. Rusop, Mater. Lett., 63, 2704 (2009); https://doi.org/10.1016/j.matlet.2009.09.048.
P. Jagdale, M. Sharon, G. Kalita, N.M.N. Maldar and M. Sharon, Adv. Mater. Phys. Chem., 2, 1 (2012); https://doi.org/10.4236/ampc.2012.21001.
F.W. Geurts and J.A. Sacco Jr., Carbon, 30, 415 (1992); https://doi.org/10.1016/0008-6223(92)90039-Y.
H. Endo, K. Kuwana, K. Saito, D. Qian, R. Andrews and E.A. Grulke, Chem. Phys. Lett., 387, 307 (2004); https://doi.org/10.1016/j.cplett.2004.01.124.
A.M. Jassm, F.H. Hussein, F.H. Abdulrazzak, A.F. Alkaim and B.A. Joda, Asian J. Chem., 29, 2804 (2017); https://doi.org/10.14233/ajchem.2017.20994.