Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Sol-Gel Derived PbY2(MoO4)4:Er3+/Yb3+ Double Molybdate and Their Up-Converted Optical Properties
Corresponding Author(s) : Chang Sung Lim
Asian Journal of Chemistry,
Vol. 28 No. 8 (2016): Vol 28 Issue 8
Abstract
PbY2-x(MoO4)4:Er3+/Yb3+ double molybdate phosphors with the correct doped concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0, 0.05, 0.1, 0.2 and Yb3+= 0, 0.2, 0.45) were precisely prepared using the sol-gel method assisted by the microwave technique; their up-converted optical properties were studied. The particles showed well-crystallized morphology after heat-treated at 900 °C for 16 h. They had a homogeneous and fine morphology with grain sizes of 2-5 μm. After excitation at 980 nm, the PbY1.7(MoO4)4:Er0.1/Yb0.2 and PbY1.5(MoO4)4:Er0.05/Yb0.45 double molybdates provided a strong up-converted emission band of 525 nm, a weak up-converted emission band of 550 nm in the green region and a very weak up-converted emission band of 655 nm in the red region. The spectroscopic spectra of Raman for the doped molybdates showed the presence of strong peaks at higher and lower frequencies. It was induced by highly modulated structures of PbY2-x(MoO4)4 by the incorporation of the Er3+ and Yb3+ ions into the crystal lattice. These results were attributed to the unit cell shrinkage as well as the anion deficient of the MoO4-x group.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015); doi:10.1039/C5CP03054D.
- M. Lin, Y. Zhao, S.Q. Wang, M. Liu, Z.F. Duan, Y.M. Chen, F. Li, F. Xu and T.J. Lu, Biotechnol. Adv., 30, 1551 (2012); doi:10.1016/j.biotechadv.2012.04.009.
- M.V. DaCosta, S. Doughan, Y. Han and U.J. Krull, Anal. Chim. Acta, 832, 1 (2014); doi:10.1016/j.aca.2014.04.030.
- J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013); doi:10.1016/j.jlumin.2012.07.033.
- J. Sun, Y. Lan, Z. Xia and H. Du, Opt. Mater., 33, 576 (2011); doi:10.1016/j.optmat.2010.10.049.
- C. Guo, H.K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010); doi:10.1016/j.jlumin.2010.02.052.
- T. Li, C. Guo, Y. Wu, L. Li and J.H. Jeong, J. Alloys Comp., 540, 107 (2012); doi:10.1016/j.jallcom.2012.04.052.
- M. Nazarov and D.Y. Noh, J. Rare Earths, 28, 1 (2010); doi:10.1016/S1002-0721(10)60390-0.
- J. Sun, W. Zhang, W. Zhang and H. Du, Mater. Res. Bull., 47, 786 (2012); doi:10.1016/j.materresbull.2011.12.005.
- H. Du, Y. Lan, Z. Xia and J. Sun, Mater. Res. Bull., 44, 1660 (2009); doi:10.1016/j.materresbull.2009.04.009.
- Z. Wang, H. Liang, M. Gong and Q. Su, J. Alloys Comp., 432, 308 (2007); doi:10.1016/j.jallcom.2006.06.008.
- M. Haque and D.K. Kim, Mater. Lett., 63, 793 (2009); doi:10.1016/j.matlet.2009.01.018.
- C. Zhao, X. Yin, F. Huang and Y. Hang, J. Solid State Chem., 184, 3190 (2011); doi:10.1016/j.jssc.2011.09.025.
- L. Qin, Y. Huang, T. Tsuboi and H.J. Seo, Mater. Res. Bull., 47, 4498 (2012); doi:10.1016/j.materresbull.2012.10.004.
- Y. Yang, E. Liu, L. Li, Z. Huang, H. Shen and X. Xiang, J. Alloys Comp., 505, 555 (2010); doi:10.1016/j.jallcom.2010.06.072.
- Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang and Q. Meng, J. Alloys Comp., 509, 6096 (2011); doi:10.1016/j.jallcom.2011.03.034.
- Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011); doi:10.1016/j.optmat.2010.12.015.
- Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B, 407, 2556 (2012); doi:10.1016/j.physb.2012.03.066.
- Z. Wang, H. Liang, L. Zhou, J. Wang, M. Gong and Q. Su, J. Lumin., 128, 147 (2008); doi:10.1016/j.jlumin.2007.07.001.
- Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao and H. Xu, J. Rare Earths, 29, 843 (2011); doi:10.1016/S1002-0721(10)60553-4.
- X. Shen, L. Li, F. He, X. Meng and F. Song, Mater. Chem. Phys., 132, 471 (2012); doi:10.1016/j.matchemphys.2011.11.055.
- J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu and L. Peng, Inorg. Chem. Commun., 14, 1723 (2011); doi:10.1016/j.inoche.2011.07.015.
- S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
- T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
- C.S. Lim, Mater. Res. Bull., 60, 537 (2014); doi:10.1016/j.materresbull.2014.08.056.
- C.S. Lim, Infrared Phys. Technol., 67, 371 (2014); doi:10.1016/j.infrared.2014.08.018.
- R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); doi:10.1107/S0567739476001551.
- A.M. Abakumov, V.A. Morozov, A.A. Tsirlin, J. Verbeeck and J. Hadermann, Inorg. Chem., 53, 9407 (2014); doi:10.1021/ic5015412.
- V.A. Morozov, A. Bertha, K.W. Meert, S. Van Rompaey, D. Batuk, G.T. Martinez, S. Van Aert, P.F. Smet, M.V. Raskina, D. Poelman, A.M. Abakumov and J. Hadermann, Chem. Mater., 25, 4387 (2013); doi:10.1021/cm402729r.
- V.A. Morozov, A.V. Mironov, B.I. Lazoryak, E.G. Khaikina, O.M. Basovich, M.D. Rossell and G. Van Tendeloo, J. Solid State Chem., 179, 1183 (2006); doi:10.1016/j.jssc.2005.12.041.
- C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Solid State Chem., 228, 160 (2015); doi:10.1016/j.jssc.2015.04.032.
- H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004); doi:10.1021/jp048072q.
References
C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015); doi:10.1039/C5CP03054D.
M. Lin, Y. Zhao, S.Q. Wang, M. Liu, Z.F. Duan, Y.M. Chen, F. Li, F. Xu and T.J. Lu, Biotechnol. Adv., 30, 1551 (2012); doi:10.1016/j.biotechadv.2012.04.009.
M.V. DaCosta, S. Doughan, Y. Han and U.J. Krull, Anal. Chim. Acta, 832, 1 (2014); doi:10.1016/j.aca.2014.04.030.
J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013); doi:10.1016/j.jlumin.2012.07.033.
J. Sun, Y. Lan, Z. Xia and H. Du, Opt. Mater., 33, 576 (2011); doi:10.1016/j.optmat.2010.10.049.
C. Guo, H.K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010); doi:10.1016/j.jlumin.2010.02.052.
T. Li, C. Guo, Y. Wu, L. Li and J.H. Jeong, J. Alloys Comp., 540, 107 (2012); doi:10.1016/j.jallcom.2012.04.052.
M. Nazarov and D.Y. Noh, J. Rare Earths, 28, 1 (2010); doi:10.1016/S1002-0721(10)60390-0.
J. Sun, W. Zhang, W. Zhang and H. Du, Mater. Res. Bull., 47, 786 (2012); doi:10.1016/j.materresbull.2011.12.005.
H. Du, Y. Lan, Z. Xia and J. Sun, Mater. Res. Bull., 44, 1660 (2009); doi:10.1016/j.materresbull.2009.04.009.
Z. Wang, H. Liang, M. Gong and Q. Su, J. Alloys Comp., 432, 308 (2007); doi:10.1016/j.jallcom.2006.06.008.
M. Haque and D.K. Kim, Mater. Lett., 63, 793 (2009); doi:10.1016/j.matlet.2009.01.018.
C. Zhao, X. Yin, F. Huang and Y. Hang, J. Solid State Chem., 184, 3190 (2011); doi:10.1016/j.jssc.2011.09.025.
L. Qin, Y. Huang, T. Tsuboi and H.J. Seo, Mater. Res. Bull., 47, 4498 (2012); doi:10.1016/j.materresbull.2012.10.004.
Y. Yang, E. Liu, L. Li, Z. Huang, H. Shen and X. Xiang, J. Alloys Comp., 505, 555 (2010); doi:10.1016/j.jallcom.2010.06.072.
Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang and Q. Meng, J. Alloys Comp., 509, 6096 (2011); doi:10.1016/j.jallcom.2011.03.034.
Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011); doi:10.1016/j.optmat.2010.12.015.
Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B, 407, 2556 (2012); doi:10.1016/j.physb.2012.03.066.
Z. Wang, H. Liang, L. Zhou, J. Wang, M. Gong and Q. Su, J. Lumin., 128, 147 (2008); doi:10.1016/j.jlumin.2007.07.001.
Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao and H. Xu, J. Rare Earths, 29, 843 (2011); doi:10.1016/S1002-0721(10)60553-4.
X. Shen, L. Li, F. He, X. Meng and F. Song, Mater. Chem. Phys., 132, 471 (2012); doi:10.1016/j.matchemphys.2011.11.055.
J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu and L. Peng, Inorg. Chem. Commun., 14, 1723 (2011); doi:10.1016/j.inoche.2011.07.015.
S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
C.S. Lim, Mater. Res. Bull., 60, 537 (2014); doi:10.1016/j.materresbull.2014.08.056.
C.S. Lim, Infrared Phys. Technol., 67, 371 (2014); doi:10.1016/j.infrared.2014.08.018.
R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); doi:10.1107/S0567739476001551.
A.M. Abakumov, V.A. Morozov, A.A. Tsirlin, J. Verbeeck and J. Hadermann, Inorg. Chem., 53, 9407 (2014); doi:10.1021/ic5015412.
V.A. Morozov, A. Bertha, K.W. Meert, S. Van Rompaey, D. Batuk, G.T. Martinez, S. Van Aert, P.F. Smet, M.V. Raskina, D. Poelman, A.M. Abakumov and J. Hadermann, Chem. Mater., 25, 4387 (2013); doi:10.1021/cm402729r.
V.A. Morozov, A.V. Mironov, B.I. Lazoryak, E.G. Khaikina, O.M. Basovich, M.D. Rossell and G. Van Tendeloo, J. Solid State Chem., 179, 1183 (2006); doi:10.1016/j.jssc.2005.12.041.
C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Solid State Chem., 228, 160 (2015); doi:10.1016/j.jssc.2015.04.032.
H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004); doi:10.1021/jp048072q.