Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Antibacterial Activities of Silver Nanoparticles
Corresponding Author(s) : Falah H. Hussein
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Silver nanoparticles (AgNPs) were synthesized from silver nitrate and sodium borohydride and the structures were characterized using ultraviolet-visible, fourier transforms infrared and energy-dispersive X-ray (EDS) spectroscopy. Zeta potential measurements and scanning electron microscopy were also used to measure the dimensions of silver nanoparticles. The particle radii were in the range of 50 to 80 nm with typical surface plasmon absorption maxima at 428 nm. The synthesized AgNPs showed antibacterial activity against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) of AgNPs was achieved at 5 μg/mL for Staphylococcus aureus and Yersinia spp. and at 1 μg/mL for Acinetobacter spp., Streptococcus pyogenes, Salmonella typhi and Vibrio cholera. Escherichia coli isolate showed a visible inhibitory effect compared to the positive control, but the highest studied concentration of AgNPs (5 μg/mL) did not inhibit the bacterial growth completely. These results suggested that silver nanoparticles can be used as an effective antibacterial agent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Marassi, L. Di Cristo, S.G.J. Smith, S. Ortelli, M. Blosi, A.L. Costa, P. Reschiglian, Y. Volkov and A. Prina-Mello, R. Soc. Open Sci., 5, 171113 (2018); https://doi.org/10.1098/rsos.171113.
- M. Guzman, J. Dille and S. Godet, Nanomedicine, 8, 37 (2012); https://doi.org/10.1016/j.nano.2011.05.007.
- A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi and S. Minaian, Nanomedicine, 3, 168 (2007); https://doi.org/10.1016/j.nano.2007.02.001.
- N.K. Palanisamy, N. Ferina, A.N. Amirulhusni, Z. Mohd-Zain, J. Hussaini, L.J. Ping and R. Durairaj, J. Nanobiotechnology, 12, 2 (2014); https://doi.org/10.1186/1477-3155-12-2.
- A. Hebeish, M.H. El-Rafie, M.A. El-Sheikh, A.A. Seleem and M.E. El-Naggar, Int. J. Biol. Macromol., 65, 509 (2014); https://doi.org/10.1016/j.ijbiomac.2014.01.071.
- X. Chen and H.J. Schluesener, Toxicol. Lett., 176, 1 (2008); https://doi.org/10.1016/j.toxlet.2007.10.004.
- A. Zur Mühlen, C. Schwarz and W. Mehnert, Eur. J. Pharm. Biopharm., 45, 149 (1998); https://doi.org/10.1016/S0939-6411(97)00150-1.
- J. Bonsak, J. Mayandi, A. Thøgersen, E.S. Marstein and U. Mahalingam, Phys. Status Solidi. C Curr. Topics Solid State Physics, 8, 924 (2011); https://doi.org/10.1002/pssc.201000275.
- A.D. McFarland and R.P. Van Duyne, Nano Lett., 3, 1057 (2003); https://doi.org/10.1021/nl034372s.
- F. Okafor, A. Janen, T. Kukhtareva, V. Edwards and M. Curley, Int. J. Environ. Res. Public Health, 10, 5221 (2013); https://doi.org/10.3390/ijerph10105221.
- R.K. Hailstone, J. Phys. Chem., 99, 4414 (1995); https://doi.org/10.1021/j100013a009.
- S. Kittler, C. Greulich, M. Köller and M. Epple, Mater. Sci. Eng. Technol., 40, 258 (2009); https://doi.org/10.1002/mawe.200800437.
- Z. Zhou and W. Wang, Orient. J. Chem., 28, 651 (2012); https://doi.org/10.13005/ojc/280204.
- S.-F. Chen and H. Zhang, Adv. Natural Sci.: Nanosci. Nanotechnol., 3, 035006 (2012); https://doi.org/10.1088/2043-6262/3/3/035006.
- A.C. Thar, T.H. Win, N.W. Lwin and T.Z. Oo, J. Phys. Sci. Appl., 5, 220 (2015).
- G. Sharma, A.R. Sharma, M. Kurian, R. Bhavesh, J.S. Nam and S.S. Lee, Dig. J. Nanomater. Biostruct., 9, 325 (2014).
- A. Hebeish, M. H. El-Rafie, M. A. El-Sheikh and M. E. El-Naggar, J. Nanotechnol., Article ID 201057 (2013); https://doi.org/10.1155/2013/201057.
- R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han and S.S. Kolekar, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 015013 (2012); https://doi.org/10.1088/2043-6262/3/1/015013.
- H.H. Lara, N.V. Ayala-Núñez, L.C. Ixtepan Turrent and C. Rodríguez Padilla, World J. Microbiol. Biotechnol., 26, 615 (2010); https://doi.org/10.1007/s11274-009-0211-3.
- E.D. Cavassin, L.F.P. de Figueiredo, J.P. Otoch, M.M. Seckler, R.A. de Oliveira, F.F. Franco, V.S. Marangoni, V. Zucolotto, A.S.Sh. Levin and S.F. Costa, J. Nanobiotechnol., 13, 64 (2015); https://doi.org/10.1186/s12951-015-0120-6.
- F. Mirzajani, A. Ghassempour, A. Aliahmadi and M.A. Esmaeili, Res. Microbiol., 162, 542 (2011); https://doi.org/10.1016/j.resmic.2011.04.009.
- M.A. Ansari, H.M. Khan, A. Khan, A. Sultan, A. Azam, M. Shahid and F. Shujatullah, Int. J. Appl. Biol. Pharm. Technol., 2, 34 (2011).
- W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ouyang and Y.B. Chen, Biometals, 24, 135 (2011); https://doi.org/10.1007/s10534-010-9381-6.
- X. Liu, M. Atwater, J. Wang and Q. Huo, Colloids Surf. B Biointerfaces, 58, 3 (2007); https://doi.org/10.1016/j.colsurfb.2006.08.005.
- J.M. Andrews, J. Antimicrob. Chemother., 48(suppl. 1), 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5.
- H. Kong and J. Jang, Chem. Commun., 28, 3010 (2006); https://doi.org/10.1039/b605286j.
- M.G. Guzmán, J. Dille and S. Godet, Int. J. Chem. Biomol. Eng., 2, 104 (2009).
- A. Sileikaitë, J. Puiso, I. Prosyèevas and S. Tamulevièius, Mater. Sci. (Med•iagotyra), 15, 21 (2009).
- A.S. Nair and T. Pradeep, Curr. Sci., 84, 1560 (2003).
- S.K. Balavandy, K. Shameli and Z.Z. Abidin, Int. J. Electrochem. Sci., 10, 486 (2015).
- A. Hebeish, M.E. El-Naggar, M.M.G. Fouda, M.A. Ramadan, S.S. AlDeyab and M.H. El-Rafie, Carbohydr. Polym., 86, 936 (2011); https://doi.org/10.1016/j.carbpol.2011.05.048.
- M. Zarei, A. Jamnejad and E. Khajehali, Jundishapur J. Microbiol., 7, e8720 (2014); https://doi.org/10.5812/jjm.8720.
- J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y. K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y. S. Lee, D.H. Jeong and M.-H. Cho, Nanomedicine, 3, 95 (2007); https://doi.org/10.1016/j.nano.2006.12.001.
- E.P. Ortiz, J.H.R. Ruiz, E.A. Hinojos-Márquez, J.L. Esparza, A.D. Cornejo, J.C. Cuevas-González, L.F. Espinosa-Cristóbal and S.Y. Reyes-López, J. Nanomater., Article ID 4752314 (2017); https://doi.org/10.1155/2017/4752314.
- H.H. Lara, N.V. Ayala-Nunez, L. del C.I. Turrent and C.R. Padilla, World J. Microbiol. Biotechnol., 26, 615 (2010); https://doi.org/10.1007/s11274-009-0211-3.
- S. Silver and L.T. Phung, Annu. Rev. Microbiol., 50, 753 (1996); https://doi.org/10.1146/annurev.micro.50.1.753.
- R.M. Slawson, M.I. Van Dyke, H. Lee and J.T. Trevors, Plasmid, 27, 72 (1992); https://doi.org/10.1016/0147-619X(92)90008-X.
- G.-F. Fuhrmann and A. Rothstein, Biomembranes, 163, 331 (1968); https://doi.org/10.1016/0005-2736(68)90118-1.
- J.R. Furr, A.D. Russell, T.D. Turner and A. Andrews, J. Hosp. Infect., 27, 201 (1994); https://doi.org/10.1016/0195-6701(94)90128-7.
- I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 275, 177 (2004); https://doi.org/10.1016/j.jcis.2004.02.012.
- M. Danilczuk, A. Lund, J. Sadlo, H. Yamada and J. Michalik, Spectrochim. Acta A Mol. Biomol. Spectrosc., 63, 189 (2006); https://doi.org/10.1016/j.saa.2005.05.002.
- J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.S. Lee, D.H. Jeong and M.-H. Cho, Nanomedicine, 3, 95 (2007); https://doi.org/10.1016/j.nano.2006.12.001.
- Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim and J.O. Kim, J. Biomed. Mater. Res. A, 52, 662 (2000); https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
References
V. Marassi, L. Di Cristo, S.G.J. Smith, S. Ortelli, M. Blosi, A.L. Costa, P. Reschiglian, Y. Volkov and A. Prina-Mello, R. Soc. Open Sci., 5, 171113 (2018); https://doi.org/10.1098/rsos.171113.
M. Guzman, J. Dille and S. Godet, Nanomedicine, 8, 37 (2012); https://doi.org/10.1016/j.nano.2011.05.007.
A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi and S. Minaian, Nanomedicine, 3, 168 (2007); https://doi.org/10.1016/j.nano.2007.02.001.
N.K. Palanisamy, N. Ferina, A.N. Amirulhusni, Z. Mohd-Zain, J. Hussaini, L.J. Ping and R. Durairaj, J. Nanobiotechnology, 12, 2 (2014); https://doi.org/10.1186/1477-3155-12-2.
A. Hebeish, M.H. El-Rafie, M.A. El-Sheikh, A.A. Seleem and M.E. El-Naggar, Int. J. Biol. Macromol., 65, 509 (2014); https://doi.org/10.1016/j.ijbiomac.2014.01.071.
X. Chen and H.J. Schluesener, Toxicol. Lett., 176, 1 (2008); https://doi.org/10.1016/j.toxlet.2007.10.004.
A. Zur Mühlen, C. Schwarz and W. Mehnert, Eur. J. Pharm. Biopharm., 45, 149 (1998); https://doi.org/10.1016/S0939-6411(97)00150-1.
J. Bonsak, J. Mayandi, A. Thøgersen, E.S. Marstein and U. Mahalingam, Phys. Status Solidi. C Curr. Topics Solid State Physics, 8, 924 (2011); https://doi.org/10.1002/pssc.201000275.
A.D. McFarland and R.P. Van Duyne, Nano Lett., 3, 1057 (2003); https://doi.org/10.1021/nl034372s.
F. Okafor, A. Janen, T. Kukhtareva, V. Edwards and M. Curley, Int. J. Environ. Res. Public Health, 10, 5221 (2013); https://doi.org/10.3390/ijerph10105221.
R.K. Hailstone, J. Phys. Chem., 99, 4414 (1995); https://doi.org/10.1021/j100013a009.
S. Kittler, C. Greulich, M. Köller and M. Epple, Mater. Sci. Eng. Technol., 40, 258 (2009); https://doi.org/10.1002/mawe.200800437.
Z. Zhou and W. Wang, Orient. J. Chem., 28, 651 (2012); https://doi.org/10.13005/ojc/280204.
S.-F. Chen and H. Zhang, Adv. Natural Sci.: Nanosci. Nanotechnol., 3, 035006 (2012); https://doi.org/10.1088/2043-6262/3/3/035006.
A.C. Thar, T.H. Win, N.W. Lwin and T.Z. Oo, J. Phys. Sci. Appl., 5, 220 (2015).
G. Sharma, A.R. Sharma, M. Kurian, R. Bhavesh, J.S. Nam and S.S. Lee, Dig. J. Nanomater. Biostruct., 9, 325 (2014).
A. Hebeish, M. H. El-Rafie, M. A. El-Sheikh and M. E. El-Naggar, J. Nanotechnol., Article ID 201057 (2013); https://doi.org/10.1155/2013/201057.
R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han and S.S. Kolekar, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 015013 (2012); https://doi.org/10.1088/2043-6262/3/1/015013.
H.H. Lara, N.V. Ayala-Núñez, L.C. Ixtepan Turrent and C. Rodríguez Padilla, World J. Microbiol. Biotechnol., 26, 615 (2010); https://doi.org/10.1007/s11274-009-0211-3.
E.D. Cavassin, L.F.P. de Figueiredo, J.P. Otoch, M.M. Seckler, R.A. de Oliveira, F.F. Franco, V.S. Marangoni, V. Zucolotto, A.S.Sh. Levin and S.F. Costa, J. Nanobiotechnol., 13, 64 (2015); https://doi.org/10.1186/s12951-015-0120-6.
F. Mirzajani, A. Ghassempour, A. Aliahmadi and M.A. Esmaeili, Res. Microbiol., 162, 542 (2011); https://doi.org/10.1016/j.resmic.2011.04.009.
M.A. Ansari, H.M. Khan, A. Khan, A. Sultan, A. Azam, M. Shahid and F. Shujatullah, Int. J. Appl. Biol. Pharm. Technol., 2, 34 (2011).
W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ouyang and Y.B. Chen, Biometals, 24, 135 (2011); https://doi.org/10.1007/s10534-010-9381-6.
X. Liu, M. Atwater, J. Wang and Q. Huo, Colloids Surf. B Biointerfaces, 58, 3 (2007); https://doi.org/10.1016/j.colsurfb.2006.08.005.
J.M. Andrews, J. Antimicrob. Chemother., 48(suppl. 1), 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5.
H. Kong and J. Jang, Chem. Commun., 28, 3010 (2006); https://doi.org/10.1039/b605286j.
M.G. Guzmán, J. Dille and S. Godet, Int. J. Chem. Biomol. Eng., 2, 104 (2009).
A. Sileikaitë, J. Puiso, I. Prosyèevas and S. Tamulevièius, Mater. Sci. (Med•iagotyra), 15, 21 (2009).
A.S. Nair and T. Pradeep, Curr. Sci., 84, 1560 (2003).
S.K. Balavandy, K. Shameli and Z.Z. Abidin, Int. J. Electrochem. Sci., 10, 486 (2015).
A. Hebeish, M.E. El-Naggar, M.M.G. Fouda, M.A. Ramadan, S.S. AlDeyab and M.H. El-Rafie, Carbohydr. Polym., 86, 936 (2011); https://doi.org/10.1016/j.carbpol.2011.05.048.
M. Zarei, A. Jamnejad and E. Khajehali, Jundishapur J. Microbiol., 7, e8720 (2014); https://doi.org/10.5812/jjm.8720.
J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y. K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y. S. Lee, D.H. Jeong and M.-H. Cho, Nanomedicine, 3, 95 (2007); https://doi.org/10.1016/j.nano.2006.12.001.
E.P. Ortiz, J.H.R. Ruiz, E.A. Hinojos-Márquez, J.L. Esparza, A.D. Cornejo, J.C. Cuevas-González, L.F. Espinosa-Cristóbal and S.Y. Reyes-López, J. Nanomater., Article ID 4752314 (2017); https://doi.org/10.1155/2017/4752314.
H.H. Lara, N.V. Ayala-Nunez, L. del C.I. Turrent and C.R. Padilla, World J. Microbiol. Biotechnol., 26, 615 (2010); https://doi.org/10.1007/s11274-009-0211-3.
S. Silver and L.T. Phung, Annu. Rev. Microbiol., 50, 753 (1996); https://doi.org/10.1146/annurev.micro.50.1.753.
R.M. Slawson, M.I. Van Dyke, H. Lee and J.T. Trevors, Plasmid, 27, 72 (1992); https://doi.org/10.1016/0147-619X(92)90008-X.
G.-F. Fuhrmann and A. Rothstein, Biomembranes, 163, 331 (1968); https://doi.org/10.1016/0005-2736(68)90118-1.
J.R. Furr, A.D. Russell, T.D. Turner and A. Andrews, J. Hosp. Infect., 27, 201 (1994); https://doi.org/10.1016/0195-6701(94)90128-7.
I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 275, 177 (2004); https://doi.org/10.1016/j.jcis.2004.02.012.
M. Danilczuk, A. Lund, J. Sadlo, H. Yamada and J. Michalik, Spectrochim. Acta A Mol. Biomol. Spectrosc., 63, 189 (2006); https://doi.org/10.1016/j.saa.2005.05.002.
J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.S. Lee, D.H. Jeong and M.-H. Cho, Nanomedicine, 3, 95 (2007); https://doi.org/10.1016/j.nano.2006.12.001.
Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim and J.O. Kim, J. Biomed. Mater. Res. A, 52, 662 (2000); https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.