Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Study on Surface Morphology of Ni-Al2O3 Composite Prepared by Agglomeration Process
Corresponding Author(s) : Chang-Suk Han
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
Aluminium(III) oxide (Al2O3) particles (mean diameter: 250 μm) were coated with fine Ni particles (mean diameter: 5 μm) by an agglomeration coating technique. The Ni content was 40-50 vol. %. The compact of coated particles was sintered at temperature of 1200-1500 °C. The use of coated particles resulted in uniform dispersion of Al2O3 particles in Ni matrix. The pre-coating of Al2O3 particles with fine W particles (mean diameter: 1 μm) was effective to improve the adhesion and wettability of Ni to Al2O3. Although the relative density of the sintered body was 70-80 %, the dense composite was produced by the infiltration of molten Ni into the porous sintered body.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.G. Fahrenholtz, D.T. Ellerby and R.E. Loehman, J. Am. Ceram. Soc., 83, 1279 (2000); doi:10.1111/j.1151-2916.2000.tb01368.x.
- W.H. Tuan, M.C. Lin and H.H. Wu, Ceram. Int., 21, 221 (1995); doi:10.1016/0272-8842(95)99785-A.
- T. Sekino and K. Niihara, Nanostruct. Mater., 6, 663 (1995); doi:10.1016/0965-9773(95)00145-X.
- H. Awaji, S.-M. Choi and E. Yagi, Mech. Mater., 34, 411 (2002); doi:10.1016/S0167-6636(02)00129-1.
- M.F. Ashby, F.J. Blunt and M. Bannister, Acta Metall., 37, 1847 (1989); doi:10.1016/0001-6160(89)90069-2.
- R. Rypl, R. Chudoba, A. Scholzen and M. Vorechovsky, Compos. Sci. Technol., 89, 98 (2013); doi:10.1016/j.compscitech.2013.09.014.
- J. Riesch, J.Y. Buffiere, T. Hoschen, M. di Michiel, M. Scheel, Ch. Linsmeier and J.H. You, Acta Mater., 61, 7060 (2013); doi:10.1016/j.actamat.2013.07.035.
- K.T. Tan, N. Watanabe and Y. Iwahori, Compos. Struct., 92, 1399 (2010); doi:10.1016/j.compstruct.2009.11.018.
- S. Jihong, J. Dongliang, T. Shouhong and G. Jingkun, Mater. Lett., 14, 240 (1992); doi:10.1016/0167-577X(92)90164-F.
- K. Matsui, N. Ohmichi, M. Ohgai, N. Enomoto and J. Hojo, J. Am. Ceram. Soc., 88, 3346 (2005); doi:10.1111/j.1551-2916.2005.00620.x.
- J. Fan, X. Liu and B. Huang, Powder Metall. Technol., 23, 120 (2005).
- J. Lu, L. Gao, J. Sun, L. Gui and J. Guo, J. Mater. Sci. Lett., 20, 1 (2001); doi:10.1023/A:1006713107913.
- L. Wang, J.L. Shi, J.H. Gao and D.-S. Yan, J. Eur. Ceram. Soc., 21, 1213 (2001); doi:10.1016/S0955-2219(00)00325-3.
References
W.G. Fahrenholtz, D.T. Ellerby and R.E. Loehman, J. Am. Ceram. Soc., 83, 1279 (2000); doi:10.1111/j.1151-2916.2000.tb01368.x.
W.H. Tuan, M.C. Lin and H.H. Wu, Ceram. Int., 21, 221 (1995); doi:10.1016/0272-8842(95)99785-A.
T. Sekino and K. Niihara, Nanostruct. Mater., 6, 663 (1995); doi:10.1016/0965-9773(95)00145-X.
H. Awaji, S.-M. Choi and E. Yagi, Mech. Mater., 34, 411 (2002); doi:10.1016/S0167-6636(02)00129-1.
M.F. Ashby, F.J. Blunt and M. Bannister, Acta Metall., 37, 1847 (1989); doi:10.1016/0001-6160(89)90069-2.
R. Rypl, R. Chudoba, A. Scholzen and M. Vorechovsky, Compos. Sci. Technol., 89, 98 (2013); doi:10.1016/j.compscitech.2013.09.014.
J. Riesch, J.Y. Buffiere, T. Hoschen, M. di Michiel, M. Scheel, Ch. Linsmeier and J.H. You, Acta Mater., 61, 7060 (2013); doi:10.1016/j.actamat.2013.07.035.
K.T. Tan, N. Watanabe and Y. Iwahori, Compos. Struct., 92, 1399 (2010); doi:10.1016/j.compstruct.2009.11.018.
S. Jihong, J. Dongliang, T. Shouhong and G. Jingkun, Mater. Lett., 14, 240 (1992); doi:10.1016/0167-577X(92)90164-F.
K. Matsui, N. Ohmichi, M. Ohgai, N. Enomoto and J. Hojo, J. Am. Ceram. Soc., 88, 3346 (2005); doi:10.1111/j.1551-2916.2005.00620.x.
J. Fan, X. Liu and B. Huang, Powder Metall. Technol., 23, 120 (2005).
J. Lu, L. Gao, J. Sun, L. Gui and J. Guo, J. Mater. Sci. Lett., 20, 1 (2001); doi:10.1023/A:1006713107913.
L. Wang, J.L. Shi, J.H. Gao and D.-S. Yan, J. Eur. Ceram. Soc., 21, 1213 (2001); doi:10.1016/S0955-2219(00)00325-3.