Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Probing the Nature of Defects of Graphene like Nano-Carbon from Amorphous Materials by Raman Spectroscopy
Corresponding Author(s) : B. Manoj
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
Raman spectral characterization of selected carbonaceous materials has been carried out at excitation wavelengths 514, 633 and 1064 nm. Raman studies exhibit the presence of G band owing to the first order of E2g mode scattering. sp3 domains at about 1355 cm-1 (D band) are ascribed to the disordered structures due to the on-site and hoping defects which introduces distortions in the crystal lattice. Spectral de-convolution indicates the prominence of bands namely G, D1, D2, D3 and D4. D3 and D4 bands follow Gaussian, while the others Lorentian distribution. With change in excitation wavelength of laser, the degree of dispersion of G peak and ID/IG intensity ratio are found to increase. The crystallite size La, shows an inverse relation with intensity of defect to graphite band (ID/IG) and it also obeys Tuinstra-Koenig relation for nano-crystalline substance. The lateral size of aromatic lamellae determined using XRD analysis is in good agreement with that of Raman analysis. The feasibility of using kerosene soot, diesel soot and carbon black for electrochemical applications are also explored.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 43, 1731 (2005); doi:10.1016/j.carbon.2005.02.018.
- M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007); doi:10.1039/b613962k.
- B. Manoj and A.G. Kunjomana, Russ. J. Appl. Chem., 87, 1726 (2014); doi:10.1134/S1070427214110251.
- A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 032183 (2012); doi:10.1063/1.4756995.
- T. Jawhari, A. Roid and J. Casado, Carbon, 33, 1561 (1995); doi:10.1016/0008-6223(95)00117-V.
- A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov and C. Casiraghi, Nano Lett., 12, 3925 (2012); doi:10.1021/nl300901a.
- B. Manoj, Int. J. Miner. Metull. Mater., 21, 940 (2014); doi:10.1007/s12613-014-0993-7.
- A.N. Mohan and B. Manoj, Int. J. Electrochem. Sci., 7, 9537 (2012).
- V. Mennella, G. Monaco, L. Colangeli and E. Bussoletti, Carbon, 33, 115 (1995); doi:10.1016/0008-6223(94)00113-E.
- R.J. Nemanich and S.A. Solin, Phys. Rev. B, 20, 392 (1979); doi:10.1103/PhysRevB.20.392.
- B. Manoj and A.G. Kunjomana, Asian J. Mater. Sci., 2, 204 (2010); doi:10.3923/ajmskr.2010.204.210.
- K. Ramya, J. Jerin and B. Manoj, Int. J. Elem. Sci., 8, 9421 (2013).
- A.C. Ferrari and J. Robertson, Phys. Rev. B, 64, 075414 (2001); doi:10.1103/PhysRevB.64.075414.
- B. Manoj, J. Bioremed. Biodeg., 6, (2015); doi:10.4172/2155-6199.10000306.
- B. Manoj, Res. J. Biotechnol., 8, 49 (2013)
- B. Manoj, Asian J. Chem., 26, 4553 (2014); doi:10.14233/ajchem.2014.15150.
- B. Manoj and A.G. Kunjomana, J. Miner. Mater. Charact. Eng., 9, 919 (2010); doi:10.4236/jmmce.2010.910067.
- F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); doi:10.1063/1.1674108.
- L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala and A.C. Ferrari, Nano Lett., 11, 3190 (2011); doi:10.1021/nl201432g.
- M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete and A. Jorio, Carbon, 48, 1592 (2010); doi:10.1016/j.carbon.2009.12.057.
- B. Manoj, Russian J. Phys. Chem. A, 89, 2438 (2015); doi:10.1134/S0036024415130257.
- M. Balachandran, Am. J. Anal. Chem., 5, 367 (2014); doi:10.4236/ajac.2014.56044.
References
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 43, 1731 (2005); doi:10.1016/j.carbon.2005.02.018.
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007); doi:10.1039/b613962k.
B. Manoj and A.G. Kunjomana, Russ. J. Appl. Chem., 87, 1726 (2014); doi:10.1134/S1070427214110251.
A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 032183 (2012); doi:10.1063/1.4756995.
T. Jawhari, A. Roid and J. Casado, Carbon, 33, 1561 (1995); doi:10.1016/0008-6223(95)00117-V.
A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov and C. Casiraghi, Nano Lett., 12, 3925 (2012); doi:10.1021/nl300901a.
B. Manoj, Int. J. Miner. Metull. Mater., 21, 940 (2014); doi:10.1007/s12613-014-0993-7.
A.N. Mohan and B. Manoj, Int. J. Electrochem. Sci., 7, 9537 (2012).
V. Mennella, G. Monaco, L. Colangeli and E. Bussoletti, Carbon, 33, 115 (1995); doi:10.1016/0008-6223(94)00113-E.
R.J. Nemanich and S.A. Solin, Phys. Rev. B, 20, 392 (1979); doi:10.1103/PhysRevB.20.392.
B. Manoj and A.G. Kunjomana, Asian J. Mater. Sci., 2, 204 (2010); doi:10.3923/ajmskr.2010.204.210.
K. Ramya, J. Jerin and B. Manoj, Int. J. Elem. Sci., 8, 9421 (2013).
A.C. Ferrari and J. Robertson, Phys. Rev. B, 64, 075414 (2001); doi:10.1103/PhysRevB.64.075414.
B. Manoj, J. Bioremed. Biodeg., 6, (2015); doi:10.4172/2155-6199.10000306.
B. Manoj, Res. J. Biotechnol., 8, 49 (2013)
B. Manoj, Asian J. Chem., 26, 4553 (2014); doi:10.14233/ajchem.2014.15150.
B. Manoj and A.G. Kunjomana, J. Miner. Mater. Charact. Eng., 9, 919 (2010); doi:10.4236/jmmce.2010.910067.
F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); doi:10.1063/1.1674108.
L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala and A.C. Ferrari, Nano Lett., 11, 3190 (2011); doi:10.1021/nl201432g.
M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete and A. Jorio, Carbon, 48, 1592 (2010); doi:10.1016/j.carbon.2009.12.057.
B. Manoj, Russian J. Phys. Chem. A, 89, 2438 (2015); doi:10.1134/S0036024415130257.
M. Balachandran, Am. J. Anal. Chem., 5, 367 (2014); doi:10.4236/ajac.2014.56044.