Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral Characterization, Grain Size Effect, Antimicrobial, DNA Cleavage and Anticancer Activities of Cobalt(II), Nickel(II), Copper(II) and Zinc(II) Complexes of Schiff Base
Corresponding Author(s) : R. Selwin Joseyphus
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
A series of cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with a newly prepared Schiff base ligand. The ligand was prepared by the condensation of indole-3-carboxaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene (1:1 molar ratio). The complexes were characterized by elemental analysis, molar conductance, magnetic moment, UV-visible, IR, 1H NMR and mass spectrometric techniques. From the results of physico-chemical and spectral techniques, tetrahedral and square planar geometry have been proposed for these metal complexes. The crystallinity and surface morphologies of the metal-complexes were examined by powder XRD and SEM. Antibacterial and antifungal activities of the metal-complexes were screened by Kirby-Bauer disk diffusion method. DNA cleavage was investigated using the Gel-electrophoresis method. The super oxide anion scavenging and anticancer activities of the metal-complexes against HeLa cell line were determined using MTT assay.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Sakamoto, S. Itose, T. Ishimori, N. Matsumoto, H. Okawa and S. Kida, Bull. Chem. Soc. Jpn., 63, 1830 (1990); doi:10.1246/bcsj.63.1830.
- N. Raman and S. Sobha, Inorg. Chem. Commun., 17, 120 (2012); doi:10.1016/j.inoche.2011.12.029.
- H. Zafar, A. Ahmad, A.U. Khan and T.A. Khan, J. Mol. Struct., 1097, 129 (2015); doi:10.1016/j.molstruc.2015.04.034.
- M.P. Kumar, S. Tejaswi, A. Rambabu, V.K.A. Kalalbandi and Shivaraj, Polyhedron, 102, 111 (2015); doi:10.1016/j.poly.2015.07.052.
- H.Q. Chang, L. Jia, J. Xu, T.F. Zhu, Z.Q. Xu, R.H. Chen, T.L. Ma, Y. Wang and W.N. Wu, J. Mol. Struct., 1106, 366 (2016); doi:10.1016/j.molstruc.2015.11.001.
- G.Y. Nagesh, K. Mahendra Raj and B.H.M. Mruthyunjayaswamy, J. Mol. Struct., 1079, 423 (2015); doi:10.1016/j.molstruc.2014.09.013.
- S. Naiya, H.-S. Wang, M.G.B. Drew, Y. Song and A. Ghosh, Dalton Trans., 40, 2744 (2011); doi:10.1039/c0dt00978d.
- E.M. Zayed, G.G. Mohamed and A.M.M. Hindy, J. Therm. Anal. Calorim., 120, 893 (2015); doi:10.1007/s10973-014-4061-3.
- F. Rahaman and B.H.M. Mruthyunjayaswamy, Complex Metals, 1, 88 (2014); doi:10.1080/2164232X.2014.889580.
- R. Klement, F. Stock, H. Elias, H. Paulus, P. Pelikan, M. Valko and M. Mazur, Polyhedron, 18, 3617 (1999); doi:10.1016/S0277-5387(99)00291-0.
- M.M. Omar, G.G. Mohamed and A.A. Ibrahim, Spectrochim. Acta A, 73, 358 (2009); doi:10.1016/j.saa.2009.02.043.
- P. Kumar, B. Baidya, S.K. Chaturvedi, R.H. Khan, D. Manna and B. Mondal, Inorg. Chim. Acta, 376, 264 (2011); doi:10.1016/j.ica.2011.06.022.
- A.I. Vogel, Text Book of Quantitative Inorganic Chemistry, Longman Group Limited, New York (1978).
- A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).
- I.H.A. Gulcin, M. Alici and M. Cesur, Chem. Pharm. Bull. (Tokyo), 53, 281 (2005); doi:10.1248/cpb.53.281.
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); doi:10.1016/0022-1759(83)90303-4.
- A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991); doi:10.1093/jnci/83.11.757.
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); doi:10.1016/S0010-8545(00)80009-0.
- M. Turner, H. Koksal, S. Serin and S. Patat, Synth. React. Inorg. Met.-Org. Chem., 27, 59 (1997); doi:10.1080/00945719708000182.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, edn 2 (1968).
- D. Banerjea, Coordination Chemistry, Tata McGraw-Hill, India (1993).
- L. Li, C. Zhao, T. Xu, H. Ji, Y. Yu, G. Guo and H. Chao, J. Inorg. Biochem., 99, 1076 (2005); doi:10.1016/j.jinorgbio.2005.01.017.
- S. Celen, E. Gungor, H. Kara and A.D. Azaz, J. Coord. Chem., 66, 3170 (2013); doi:10.1080/00958972.2013.829568.
- G. Yang, G.Z. Wu, L. Wang, L.N. Ji and X. Tian, J. Inorg. Biochem., 66, 141 (1997); doi:10.1016/S0162-0134(96)00194-8.
- K. Nagashri, J. Joseph and C.J. Dhanaraj, Appl. Organomet. Chem., 25, 704 (2011); doi:10.1002/aoc.1831.
- J. Qi, S. Liang, Y. Gou, Z. Zhang, Z. Zhou, F. Yang and H. Liang, Eur. J. Med. Chem., 96, 360 (2015); doi:10.1016/j.ejmech.2015.04.031.
References
M. Sakamoto, S. Itose, T. Ishimori, N. Matsumoto, H. Okawa and S. Kida, Bull. Chem. Soc. Jpn., 63, 1830 (1990); doi:10.1246/bcsj.63.1830.
N. Raman and S. Sobha, Inorg. Chem. Commun., 17, 120 (2012); doi:10.1016/j.inoche.2011.12.029.
H. Zafar, A. Ahmad, A.U. Khan and T.A. Khan, J. Mol. Struct., 1097, 129 (2015); doi:10.1016/j.molstruc.2015.04.034.
M.P. Kumar, S. Tejaswi, A. Rambabu, V.K.A. Kalalbandi and Shivaraj, Polyhedron, 102, 111 (2015); doi:10.1016/j.poly.2015.07.052.
H.Q. Chang, L. Jia, J. Xu, T.F. Zhu, Z.Q. Xu, R.H. Chen, T.L. Ma, Y. Wang and W.N. Wu, J. Mol. Struct., 1106, 366 (2016); doi:10.1016/j.molstruc.2015.11.001.
G.Y. Nagesh, K. Mahendra Raj and B.H.M. Mruthyunjayaswamy, J. Mol. Struct., 1079, 423 (2015); doi:10.1016/j.molstruc.2014.09.013.
S. Naiya, H.-S. Wang, M.G.B. Drew, Y. Song and A. Ghosh, Dalton Trans., 40, 2744 (2011); doi:10.1039/c0dt00978d.
E.M. Zayed, G.G. Mohamed and A.M.M. Hindy, J. Therm. Anal. Calorim., 120, 893 (2015); doi:10.1007/s10973-014-4061-3.
F. Rahaman and B.H.M. Mruthyunjayaswamy, Complex Metals, 1, 88 (2014); doi:10.1080/2164232X.2014.889580.
R. Klement, F. Stock, H. Elias, H. Paulus, P. Pelikan, M. Valko and M. Mazur, Polyhedron, 18, 3617 (1999); doi:10.1016/S0277-5387(99)00291-0.
M.M. Omar, G.G. Mohamed and A.A. Ibrahim, Spectrochim. Acta A, 73, 358 (2009); doi:10.1016/j.saa.2009.02.043.
P. Kumar, B. Baidya, S.K. Chaturvedi, R.H. Khan, D. Manna and B. Mondal, Inorg. Chim. Acta, 376, 264 (2011); doi:10.1016/j.ica.2011.06.022.
A.I. Vogel, Text Book of Quantitative Inorganic Chemistry, Longman Group Limited, New York (1978).
A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).
I.H.A. Gulcin, M. Alici and M. Cesur, Chem. Pharm. Bull. (Tokyo), 53, 281 (2005); doi:10.1248/cpb.53.281.
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); doi:10.1016/0022-1759(83)90303-4.
A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991); doi:10.1093/jnci/83.11.757.
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); doi:10.1016/S0010-8545(00)80009-0.
M. Turner, H. Koksal, S. Serin and S. Patat, Synth. React. Inorg. Met.-Org. Chem., 27, 59 (1997); doi:10.1080/00945719708000182.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, edn 2 (1968).
D. Banerjea, Coordination Chemistry, Tata McGraw-Hill, India (1993).
L. Li, C. Zhao, T. Xu, H. Ji, Y. Yu, G. Guo and H. Chao, J. Inorg. Biochem., 99, 1076 (2005); doi:10.1016/j.jinorgbio.2005.01.017.
S. Celen, E. Gungor, H. Kara and A.D. Azaz, J. Coord. Chem., 66, 3170 (2013); doi:10.1080/00958972.2013.829568.
G. Yang, G.Z. Wu, L. Wang, L.N. Ji and X. Tian, J. Inorg. Biochem., 66, 141 (1997); doi:10.1016/S0162-0134(96)00194-8.
K. Nagashri, J. Joseph and C.J. Dhanaraj, Appl. Organomet. Chem., 25, 704 (2011); doi:10.1002/aoc.1831.
J. Qi, S. Liang, Y. Gou, Z. Zhang, Z. Zhou, F. Yang and H. Liang, Eur. J. Med. Chem., 96, 360 (2015); doi:10.1016/j.ejmech.2015.04.031.