Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphitization of Coal by Bio-Solubilization: Structure Probe by Raman Spectroscopy
Corresponding Author(s) : C.D. Elcey
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
Raman spectra of two coal samples of different rank have been examined with Raman spectrometer operating at an excitation wavelength of 514.5 nm. Raman studies manifested the presence of G band conforming the first order scattering of E2g mode. The sp3 domains at about 1355 cm-1 (D band) is an evidence to edge planes and disordered structures. Analysis by curve fitting the first order spectrum justified the presence of G, D1, D2, D3 and D4 bands. The integrated intensity ratio IG/ID¢ is found to be 3.66 and 5.8 while the IG/ID¢ ratio is estimated to be about 3 and 4.9 for bituminous and sub-bituminous coal, respectively indicating on-site and hopping defect in the graphene layers. The 2D band is fitted with multiple Lorentian profile has 4 peaks, the intense G*, G’, D + D¢ and 2D¢ band at 2445, 2690, 2925 and 3160 cm-1. From the second order spectrum, formation of about 6-8 stacked graphene layers is observed in sub-bitumionus coal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 43, 1731 (2005); doi:10.1016/j.carbon.2005.02.018.
- A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 032183 (2012); doi:10.1063/1.4756995.
- A.C. Ferrari and D.M. Basko, Nat. Nanotechnol., 8, 235 (2013); doi:10.1038/nnano.2013.46.
- M. Balachandran and A.G. Kunjomana, Int. J. Electrochem. Sci., 7, 3127 (2012).
- M. Balachandran and A.G. Kunjomana, J. Int. Min. Metall. Mat., 19, 279 (2012); doi:10.1007/s12613-012-0551-0.
- Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou and J. Qiu, Energy Fuels, 26, 5186 (2012); doi:10.1021/ef300919d.
- H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada and Y. Sato, Fuel, 83, 2427 (2004); doi:10.1016/j.fuel.2004.06.019.
- B. Manoj and A.G. Kunjomana, J. Miner. Mat. Charact. Eng., 9, 919 (2010); doi:10.4236/jmmce.2010.910067 .
- A.C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000); doi:10.1103/PhysRevB.61.14095.
- B. Manoj, Russian J. Phys. Chem. A, 89, 2438 (2015); doi:10.1134/S0036024415130257.
- K. Ramya, J. John and M. Balachandran, Int. J. Electochem. Sci., 8, 9421 (2013).
- A. Mohan and M. Balachandran, Int. J. Electochem. Sci., 7, 9537 (2012).
- M. Balachandran, S. Sreelakshmis, A.N. Mohan and A.G. Kunjomana, Int. J. Electrochem. Sci., 7, 3215 (2012).
- M. Balachandran, Int. J. Min. Met. Mater., 21, 940 (2014); doi:10.1007/s12613-014-0993-7.
- B. Manoj, Asian J. Chem., 26, 4553 (2014); doi:10.14233/ajchem.2014.15150.
- X. Li, J. Hayashi and C. Li, Fuel, 85, 1700 (2006); doi:10.1016/j.fuel.2006.03.008.
- B. Manoj, Res. J. Biotechnol., 8, 49 (2013).
- M. Balachandran, Am. J. Anal. Chem., 5, 367 (2014); doi:10.4236/ajac.2014.56044.
- B. Manoj and C.D. Elcey, J. Univ. Chem. Technol. Metal., 45, 385 (2011).
- M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007); doi:10.1039/B613962K.
- C.N. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed. Engl., 48, 7752 (2009); doi:10.1002/anie.200901678.
- M. Balachandran and A.G. Kunjomana, Asian J. Mater. Sci., 2, 204 (2010); doi:10.3923/ajmskr.2010.204.210.
- A.C. Ferrari and J. Robertson, Phys. Rev. B, 64, 075414 (2001); doi:10.1103/PhysRevB.64.075414.
- T. Jawhari, A. Roid and J. Casado, Carbon, 33, 1561 (1995); doi:10.1016/0008-6223(95)00117-V.
References
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 43, 1731 (2005); doi:10.1016/j.carbon.2005.02.018.
A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 032183 (2012); doi:10.1063/1.4756995.
A.C. Ferrari and D.M. Basko, Nat. Nanotechnol., 8, 235 (2013); doi:10.1038/nnano.2013.46.
M. Balachandran and A.G. Kunjomana, Int. J. Electrochem. Sci., 7, 3127 (2012).
M. Balachandran and A.G. Kunjomana, J. Int. Min. Metall. Mat., 19, 279 (2012); doi:10.1007/s12613-012-0551-0.
Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou and J. Qiu, Energy Fuels, 26, 5186 (2012); doi:10.1021/ef300919d.
H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada and Y. Sato, Fuel, 83, 2427 (2004); doi:10.1016/j.fuel.2004.06.019.
B. Manoj and A.G. Kunjomana, J. Miner. Mat. Charact. Eng., 9, 919 (2010); doi:10.4236/jmmce.2010.910067 .
A.C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000); doi:10.1103/PhysRevB.61.14095.
B. Manoj, Russian J. Phys. Chem. A, 89, 2438 (2015); doi:10.1134/S0036024415130257.
K. Ramya, J. John and M. Balachandran, Int. J. Electochem. Sci., 8, 9421 (2013).
A. Mohan and M. Balachandran, Int. J. Electochem. Sci., 7, 9537 (2012).
M. Balachandran, S. Sreelakshmis, A.N. Mohan and A.G. Kunjomana, Int. J. Electrochem. Sci., 7, 3215 (2012).
M. Balachandran, Int. J. Min. Met. Mater., 21, 940 (2014); doi:10.1007/s12613-014-0993-7.
B. Manoj, Asian J. Chem., 26, 4553 (2014); doi:10.14233/ajchem.2014.15150.
X. Li, J. Hayashi and C. Li, Fuel, 85, 1700 (2006); doi:10.1016/j.fuel.2006.03.008.
B. Manoj, Res. J. Biotechnol., 8, 49 (2013).
M. Balachandran, Am. J. Anal. Chem., 5, 367 (2014); doi:10.4236/ajac.2014.56044.
B. Manoj and C.D. Elcey, J. Univ. Chem. Technol. Metal., 45, 385 (2011).
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007); doi:10.1039/B613962K.
C.N. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed. Engl., 48, 7752 (2009); doi:10.1002/anie.200901678.
M. Balachandran and A.G. Kunjomana, Asian J. Mater. Sci., 2, 204 (2010); doi:10.3923/ajmskr.2010.204.210.
A.C. Ferrari and J. Robertson, Phys. Rev. B, 64, 075414 (2001); doi:10.1103/PhysRevB.64.075414.
T. Jawhari, A. Roid and J. Casado, Carbon, 33, 1561 (1995); doi:10.1016/0008-6223(95)00117-V.