Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antibacterial Activity of Binuclear Chromium(II) Complexes of New Schiff Base Ligand Derived from Amino Acids
Corresponding Author(s) : Ashok More
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Eight chromium(II) complexes of type, [Cr(L)(H2O)x]·xH2O (where L= Schiff base ligand) have been synthesized and characterized on the basis of elemental analysis IR, 1H, 13C NMR, mass and electronic spectroscopy, magnetic and conductance measurements. The amino acid schiff base ligand behaved as a octadentate ligand. The probable structures of the chromium(II) complexes have been elucidated and also the chromium(II) complexes were screened for antibacterial activity, which showed a moderate to good activity against Gram-positive and Gram-negative bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.G. Cozz, J. Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C.
- A.M. Abu-Dief and I.M.A. Mohamed, Beni-Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004.
- G. Kumar, D. Kumar, C.P. Singh, A. Kumar and V.B. Rana, J. Serbian Chem. Soc., 75, 629 (2010); https://doi.org/10.2298/JSC090704037K.
- P.K. Coughlin and S.J. Lippard, J. Am. Chem. Soc., 106, 2328 (1984); https://doi.org/10.1021/ja00320a018.
- L.Y. Lindoy, The Chemistry of Microcyclic Liquids, Cambridge University Press: Cambridge (1989).
- T. Katsuki, Coord. Chem. Rev., 140, 189 (1995); https://doi.org/10.1016/0010-8545(94)01124-T.
- E.G. Samsel, K. Srinivasan and K.J. Kochi, J. Am. Chem. Soc., 107, 7606 (1985); https://doi.org/10.1021/ja00311a064.
- L. Antolini, L. Menabue, M. Saladini and P. Morini, Inorg. Chim. Acta, 46, L77 (1980); https://doi.org/10.1016/S0020-1693(00)84145-6.
- L. Antolini, L. Menabue, P. Prampolini and M. Saladini, Inorg. Chim. Acta, 66, 19 (1982); https://doi.org/10.1016/S0020-1693(00)85784-9.
- L.P. Battaglia, A.B. Corradi, G. Marcotrigiano, L. Menabue and G.C. Pellacani, Inorg. Chem., 20, 1075 (1981); https://doi.org/10.1021/ic50218a024.
- G. Lusvardi, L. Menabue and M. Saladini, Inorg. Chim. Acta, 218, 53 (1994); https://doi.org/10.1016/0020-1693(93)03793-A.
- L. Antolini, L.P. Battaglia, G.B. Gavioli, A.B. Corradi, G. Marcotrigiano, L. Menabue and G.C. Pellacani, J. Am. Chem. Soc., 105, 4327 (1983); https://doi.org/10.1021/ja00351a034.
- M.K. Taylor, J. Reglinski and D. Wallace, Polyhedron, 23, 3201 (2004); https://doi.org/10.1016/j.poly.2004.10.002.
- D. Sinha, A.K. Tiwari, S. Singh, G. Shukla, P. Mishra, H. Chandra and A.K. Mishra, Eur. J. Med. Chem., 43, 160 (2008); https://doi.org/10.1016/j.ejmech.2007.03.022.
- M.Y. Khuhawar, M.A. Mughal and A.H. Channar, Eur. Polym. J., 40, 805 (2004); https://doi.org/10.1016/j.eurpolymj.2003.11.020.
- G. Kesser, R.J. Meyer and R.P. Larsen, Anal. Chem., 38, 221 (1966); https://doi.org/10.1021/ac60234a019.
- S.C. Cummings and D.H. Busch, J. Am. Chem. Soc., 92, 1924 (1970); https://doi.org/10.1021/ja00710a023.
- S.A. Sallam, Transition Metal Chem., 31, 46 (2006); https://doi.org/10.1007/s11243-005-6312-4.
- W. Zhong, W. Zishen, Y. Zhenhuan and H. Qinghua, Transition Met. Chem., 19, 235 (1994); https://doi.org/10.1007/BF00161897.
- V. Kumar and R. Dhakarey, J. Indian Coun. Chem., 20, 46 (2003).
- P. Muralidhar Reddy, Y.-P. Ho, K. Shanker, R. Rohini and V. Ravinder, Eur. J. Med. Chem., 44, 2621 (2009); https://doi.org/10.1016/j.ejmech.2008.09.035.
- M.J. O’Donnell and R.L. Polt, J. Org. Chem., 47, 2663 (1982); https://doi.org/10.1021/jo00134a030.
- K. Shanker, P.M. Reddy, R. Rohini, Y.P. Ho and V. Ravinder, J. Coord. Chem., 62, 3040 (2009); https://doi.org/10.1080/00958970902980511.
- Z.H. Chohan and M. Praveen, Appl. Organomet. Chem., 15, 617 (2001); https://doi.org/10.1002/aoc.179.
- A.B.P. Lever, Inorg. Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
- B.N. Figgis, Introduction to Ligand Field Theory, Wiley: New York (1978).
- S. Chandra and K. Gupta, Transition Met. Chem., 27, 196 (2002); https://doi.org/10.1023/A:1013935602736.
- T.P.T. Cushnie and A.J. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005); https://doi.org/10.1016/j.ijantimicag.2005.09.002.
- P.M. Reddy, A.V.S.S. Prasad and V. Ravinder, Transition Met. Chem., 32, 507 (2007); https://doi.org/10.1007/s11243-007-0205-7.
- R. Maruvada, S.C. Pal and G. Balakrish Nair, J. Micro. Bio. Methods, 20, 115 (1994); https://doi.org/10.1016/0167-7012(94)90014-0.
References
P.G. Cozz, J. Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C.
A.M. Abu-Dief and I.M.A. Mohamed, Beni-Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004.
G. Kumar, D. Kumar, C.P. Singh, A. Kumar and V.B. Rana, J. Serbian Chem. Soc., 75, 629 (2010); https://doi.org/10.2298/JSC090704037K.
P.K. Coughlin and S.J. Lippard, J. Am. Chem. Soc., 106, 2328 (1984); https://doi.org/10.1021/ja00320a018.
L.Y. Lindoy, The Chemistry of Microcyclic Liquids, Cambridge University Press: Cambridge (1989).
T. Katsuki, Coord. Chem. Rev., 140, 189 (1995); https://doi.org/10.1016/0010-8545(94)01124-T.
E.G. Samsel, K. Srinivasan and K.J. Kochi, J. Am. Chem. Soc., 107, 7606 (1985); https://doi.org/10.1021/ja00311a064.
L. Antolini, L. Menabue, M. Saladini and P. Morini, Inorg. Chim. Acta, 46, L77 (1980); https://doi.org/10.1016/S0020-1693(00)84145-6.
L. Antolini, L. Menabue, P. Prampolini and M. Saladini, Inorg. Chim. Acta, 66, 19 (1982); https://doi.org/10.1016/S0020-1693(00)85784-9.
L.P. Battaglia, A.B. Corradi, G. Marcotrigiano, L. Menabue and G.C. Pellacani, Inorg. Chem., 20, 1075 (1981); https://doi.org/10.1021/ic50218a024.
G. Lusvardi, L. Menabue and M. Saladini, Inorg. Chim. Acta, 218, 53 (1994); https://doi.org/10.1016/0020-1693(93)03793-A.
L. Antolini, L.P. Battaglia, G.B. Gavioli, A.B. Corradi, G. Marcotrigiano, L. Menabue and G.C. Pellacani, J. Am. Chem. Soc., 105, 4327 (1983); https://doi.org/10.1021/ja00351a034.
M.K. Taylor, J. Reglinski and D. Wallace, Polyhedron, 23, 3201 (2004); https://doi.org/10.1016/j.poly.2004.10.002.
D. Sinha, A.K. Tiwari, S. Singh, G. Shukla, P. Mishra, H. Chandra and A.K. Mishra, Eur. J. Med. Chem., 43, 160 (2008); https://doi.org/10.1016/j.ejmech.2007.03.022.
M.Y. Khuhawar, M.A. Mughal and A.H. Channar, Eur. Polym. J., 40, 805 (2004); https://doi.org/10.1016/j.eurpolymj.2003.11.020.
G. Kesser, R.J. Meyer and R.P. Larsen, Anal. Chem., 38, 221 (1966); https://doi.org/10.1021/ac60234a019.
S.C. Cummings and D.H. Busch, J. Am. Chem. Soc., 92, 1924 (1970); https://doi.org/10.1021/ja00710a023.
S.A. Sallam, Transition Metal Chem., 31, 46 (2006); https://doi.org/10.1007/s11243-005-6312-4.
W. Zhong, W. Zishen, Y. Zhenhuan and H. Qinghua, Transition Met. Chem., 19, 235 (1994); https://doi.org/10.1007/BF00161897.
V. Kumar and R. Dhakarey, J. Indian Coun. Chem., 20, 46 (2003).
P. Muralidhar Reddy, Y.-P. Ho, K. Shanker, R. Rohini and V. Ravinder, Eur. J. Med. Chem., 44, 2621 (2009); https://doi.org/10.1016/j.ejmech.2008.09.035.
M.J. O’Donnell and R.L. Polt, J. Org. Chem., 47, 2663 (1982); https://doi.org/10.1021/jo00134a030.
K. Shanker, P.M. Reddy, R. Rohini, Y.P. Ho and V. Ravinder, J. Coord. Chem., 62, 3040 (2009); https://doi.org/10.1080/00958970902980511.
Z.H. Chohan and M. Praveen, Appl. Organomet. Chem., 15, 617 (2001); https://doi.org/10.1002/aoc.179.
A.B.P. Lever, Inorg. Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
B.N. Figgis, Introduction to Ligand Field Theory, Wiley: New York (1978).
S. Chandra and K. Gupta, Transition Met. Chem., 27, 196 (2002); https://doi.org/10.1023/A:1013935602736.
T.P.T. Cushnie and A.J. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005); https://doi.org/10.1016/j.ijantimicag.2005.09.002.
P.M. Reddy, A.V.S.S. Prasad and V. Ravinder, Transition Met. Chem., 32, 507 (2007); https://doi.org/10.1007/s11243-007-0205-7.
R. Maruvada, S.C. Pal and G. Balakrish Nair, J. Micro. Bio. Methods, 20, 115 (1994); https://doi.org/10.1016/0167-7012(94)90014-0.