Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of Supercritical CO2 Extraction of Safflower Seed Oil Using Response Surface Methodology
Corresponding Author(s) : M. Bala
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
The present study examined extraction of safflower seed oil by using supercritical carbon dioxide. Response surface methodology was used to evaluate the effects of the process parameters, namely pressure, temperature and extraction time on the yield of safflower seed oil. The quadratic terms of time (p < 0.01), temperature (p < 0.001) and pressure (p < 0.001), interaction between time and pressure (p < 0.001), as well as time and pressure (p < 0.001) showed significant effect on the safflower oil yield in the present model. Optimum yield of safflower seed oil was predicted as 26.47 % at pressure of 450 bars, temperature 68.49 °C and extraction time of 30 min. Colour, acid value, saponification value and induction time of safflower seed oil extracted using supercritical CO2 were compared with that obtained by solvent extraction. Minor differences were found in all the studied parameters of the oils extracted by the two methods. Acid value of oil extracted using supercritical CO2 was approximately five times lower than the value obtained for the oil from solvent extraction. However, a slightly shorter induction period was recorded for the supercritical CO2 extracted safflower seed oil as compared to the solvent extracted oil at all the studied temperatures i.e., 120, 140, 160 and 180 °C. Minor differences were observed in the fatty acid composition of the oils extracted using two methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Sujatha, Functional Plant Science and Biotechnology, Global Science Books, Ed. Texeira Da Silva. pp. 160-170 (2007).
- M.L. Vosoughkia, G. Hossainchi, M. Ghavami, M. Gharachorloo and B. Delkhosh, Int. J. Agric. Sci. Res., 2, 59 (2011).
- L. Velasco, B. Perez-Vich and J.M. Fernandez-Martinez, Plant Breed., 124, 459 (2005); doi:10.1111/j.1439-0523.2005.01150.x.
- U. Gecgel, M. Demirci, E. Esendal and M. Tasan, J. Am. Oil Chem. Soc., 84, 47 (2007); doi:10.1007/s11746-006-1007-3.
- G.M. Machewad, P. Ghatge, V. Chappalwar, B. Jadhav and A. Chappalwar, J. Food Process. Technol., 3, 172 (2012); doi:10.4172/2157-7110.1000172.
- V. Singh and N. Nimbkar, in ed: R.J. Singh, Genetic Resources, Chromosome Engineering and Crop Improvement: Oilseed Crops, Vol. 4, CRC, Boca Raton, FL 33487-7742, USA, pp. 167-194 (2007).
- Y.C. Lee, S.W. Oh, J. Chang and J.H. Kim, Food Chem., 84, 1 (2004); doi:10.1016/S0308-8146(03)00158-4.
- L. Dajue and H. Mündel, Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome Italy (1996).
- D. Bas and I.H. Boyaci, J. Food Eng., 78, 836 (2007); doi:10.1016/j.jfoodeng.2005.11.024.
- C. Liyana-Pathirana and F. Shahidi, Food Chem., 93, 47 (2005); doi:10.1016/j.foodchem.2004.08.050.
- P. Bhattacharjee, R.S. Singhal and S.R. Tiwari, J. Food Eng., 79, 892 (2007); doi:10.1016/j.jfoodeng.2006.03.009.
- M.M. Pederssetti, F. Palú, E.A. da Silva, J.H. Rohling, L. Cardozo-Filho and C. Dariva, J. Food Eng., 102, 189 (2011); doi:10.1016/j.jfoodeng.2010.08.018.
- U. Salgin, J. Supercrit. Fluids, 39, 330 (2007); doi:10.1016/j.supflu.2006.03.013.
- M.P. Corso, M.R. Fagundes-Klen, E.A. Silva, L. Cardozo Filho, J.N. Santos, L.S. Freitas and C. Dariva, J. Supercrit. Fluids, 52, 56 (2010); doi:10.1016/j.supflu.2009.11.012.
- Peroxide value, In: Official Methods and Recommended Practices of the American Oil Chemists’ Society, Method 1998 Cd 8b-90, edn 5, AOCS Press, Champaign, USA (1998).
- IUPAC Standard Methods for the Analysis of Oils, Fats and Derivatives, Blackwell Scientific Editions, Oxford, edn 7 (1987).
- The Oil Stability Index Analysis Method, OSI; AOCS Official, Method Cd 12b-92 (2013).
- R. Sarin, M. Sharma and A.A. Khan, Bioresour. Technol., 100, 4187 (2009); doi:10.1016/j.biortech.2009.03.072.
- L. Quanhong and F. Caili, Food Chem., 92, 701 (2005); doi:10.1016/j.foodchem.2004.08.042.
- X. Xu, Y. Gao, G. Liu, Q. Wang and J. Zhao, LWT-Food Sci. Technol., 41, 1223 (2008); doi:10.1016/j.lwt.2007.08.002.
- G. Liu, X. Xu, Q. Hao and Y. Gao, LWT-Food Sci. Technol., 42, 1491 (2009); doi:10.1016/j.lwt.2009.04.011.
- J. Shi, C. Yi, X. Ye, S. Xue, Y. Jiang, Y. Ma and D. Liu, LWT-Food Sci. Technol., 43, 39 (2010); doi:10.1016/j.lwt.2009.07.003.
- H. Abbasi, K. Rezaei and L. Rashidi, J. Am. Oil Chem. Soc., 85, 83 (2008); doi:10.1007/s11746-007-1158-x.
- T. Clifford, Fundamentals of Supercritical Fluids, Oxford University Press, New York, USA. p. 51 (1999).
- H. Mirhosseini and C.P. Tan, Food Chem., 115, 324 (2009); doi:10.1016/j.foodchem.2008.11.090.
- M.J. Demian, Principles of Food Chemistry, Van Nostrond Reinhold International Company Limited, London, England, edn 2, pp. 37-38 (1990).
- E.N. Frankel, Lipid Oxidation, The Oily Press, Bridgwater, UK, edn 2 (2005).
- S. Dakovic, J. Turkulov and E. Dimic, Fett/Lipid, 91, 116 (1989); doi:10.1002/lipi.19890910308.
- L.M. Calvo, J. Cocero and J.M. Diez, J. Am. Oil Chem. Soc., 71, 1251 (1994); doi:10.1007/BF02540546.
- C.D. Devittori, A. Gumy, L. Kusy, C. Colarow, P. Bertoli and P. Lambelet, J. Am. Oil Chem. Soc., 77, 573 (2000); doi:10.1007/s11746-000-0092-7.
- C. Wang, L. Shi, L. Fan, Y. Ding, S. Zhao, Y. Liu and C. Ma, Ind. Crops Prod., 42, 587 (2013); doi:10.1016/j.indcrop.2012.06.031.
References
M. Sujatha, Functional Plant Science and Biotechnology, Global Science Books, Ed. Texeira Da Silva. pp. 160-170 (2007).
M.L. Vosoughkia, G. Hossainchi, M. Ghavami, M. Gharachorloo and B. Delkhosh, Int. J. Agric. Sci. Res., 2, 59 (2011).
L. Velasco, B. Perez-Vich and J.M. Fernandez-Martinez, Plant Breed., 124, 459 (2005); doi:10.1111/j.1439-0523.2005.01150.x.
U. Gecgel, M. Demirci, E. Esendal and M. Tasan, J. Am. Oil Chem. Soc., 84, 47 (2007); doi:10.1007/s11746-006-1007-3.
G.M. Machewad, P. Ghatge, V. Chappalwar, B. Jadhav and A. Chappalwar, J. Food Process. Technol., 3, 172 (2012); doi:10.4172/2157-7110.1000172.
V. Singh and N. Nimbkar, in ed: R.J. Singh, Genetic Resources, Chromosome Engineering and Crop Improvement: Oilseed Crops, Vol. 4, CRC, Boca Raton, FL 33487-7742, USA, pp. 167-194 (2007).
Y.C. Lee, S.W. Oh, J. Chang and J.H. Kim, Food Chem., 84, 1 (2004); doi:10.1016/S0308-8146(03)00158-4.
L. Dajue and H. Mündel, Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome Italy (1996).
D. Bas and I.H. Boyaci, J. Food Eng., 78, 836 (2007); doi:10.1016/j.jfoodeng.2005.11.024.
C. Liyana-Pathirana and F. Shahidi, Food Chem., 93, 47 (2005); doi:10.1016/j.foodchem.2004.08.050.
P. Bhattacharjee, R.S. Singhal and S.R. Tiwari, J. Food Eng., 79, 892 (2007); doi:10.1016/j.jfoodeng.2006.03.009.
M.M. Pederssetti, F. Palú, E.A. da Silva, J.H. Rohling, L. Cardozo-Filho and C. Dariva, J. Food Eng., 102, 189 (2011); doi:10.1016/j.jfoodeng.2010.08.018.
U. Salgin, J. Supercrit. Fluids, 39, 330 (2007); doi:10.1016/j.supflu.2006.03.013.
M.P. Corso, M.R. Fagundes-Klen, E.A. Silva, L. Cardozo Filho, J.N. Santos, L.S. Freitas and C. Dariva, J. Supercrit. Fluids, 52, 56 (2010); doi:10.1016/j.supflu.2009.11.012.
Peroxide value, In: Official Methods and Recommended Practices of the American Oil Chemists’ Society, Method 1998 Cd 8b-90, edn 5, AOCS Press, Champaign, USA (1998).
IUPAC Standard Methods for the Analysis of Oils, Fats and Derivatives, Blackwell Scientific Editions, Oxford, edn 7 (1987).
The Oil Stability Index Analysis Method, OSI; AOCS Official, Method Cd 12b-92 (2013).
R. Sarin, M. Sharma and A.A. Khan, Bioresour. Technol., 100, 4187 (2009); doi:10.1016/j.biortech.2009.03.072.
L. Quanhong and F. Caili, Food Chem., 92, 701 (2005); doi:10.1016/j.foodchem.2004.08.042.
X. Xu, Y. Gao, G. Liu, Q. Wang and J. Zhao, LWT-Food Sci. Technol., 41, 1223 (2008); doi:10.1016/j.lwt.2007.08.002.
G. Liu, X. Xu, Q. Hao and Y. Gao, LWT-Food Sci. Technol., 42, 1491 (2009); doi:10.1016/j.lwt.2009.04.011.
J. Shi, C. Yi, X. Ye, S. Xue, Y. Jiang, Y. Ma and D. Liu, LWT-Food Sci. Technol., 43, 39 (2010); doi:10.1016/j.lwt.2009.07.003.
H. Abbasi, K. Rezaei and L. Rashidi, J. Am. Oil Chem. Soc., 85, 83 (2008); doi:10.1007/s11746-007-1158-x.
T. Clifford, Fundamentals of Supercritical Fluids, Oxford University Press, New York, USA. p. 51 (1999).
H. Mirhosseini and C.P. Tan, Food Chem., 115, 324 (2009); doi:10.1016/j.foodchem.2008.11.090.
M.J. Demian, Principles of Food Chemistry, Van Nostrond Reinhold International Company Limited, London, England, edn 2, pp. 37-38 (1990).
E.N. Frankel, Lipid Oxidation, The Oily Press, Bridgwater, UK, edn 2 (2005).
S. Dakovic, J. Turkulov and E. Dimic, Fett/Lipid, 91, 116 (1989); doi:10.1002/lipi.19890910308.
L.M. Calvo, J. Cocero and J.M. Diez, J. Am. Oil Chem. Soc., 71, 1251 (1994); doi:10.1007/BF02540546.
C.D. Devittori, A. Gumy, L. Kusy, C. Colarow, P. Bertoli and P. Lambelet, J. Am. Oil Chem. Soc., 77, 573 (2000); doi:10.1007/s11746-000-0092-7.
C. Wang, L. Shi, L. Fan, Y. Ding, S. Zhao, Y. Liu and C. Ma, Ind. Crops Prod., 42, 587 (2013); doi:10.1016/j.indcrop.2012.06.031.