Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Calculation for Disproportionation of Methyltrichlorosilane and Trimethylchlorosilane Catalyzed by NaAlCl4/ZSM-5
Corresponding Author(s) : Wen-Yuan Xu
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
Disproportionation of dimethyldichlorosilance prepared with methyltrichlorosilane and trimethylchlorosilane catalyzed by AlCl3/ZSM-5, NaAlCl4/ZSM-5, NaAlCl4/Mg-ZSM-5 catalysts was calculated through MP2/6-31++G** and B3LYP/6-31++G** approaches. AlCl3/ZSM-5 catalyst performed better catalytic effect for the disproportionation whose activation energy in rate-determining step of its main reaction was 92.68 kJ mol-1. But AlCl3/ZSM-5 catalyst has the disadvantages of subliming and dissolving in samples; NaAlCl4/ZSM-5 catalyst would reduce to AlCl3/ZSM-5 catalyst in reaction process, activation energies of which in forward and reverse reactions were Ea = 17 kJ mol-1, Ear = 77 kJ mol-1, respectively. The stability of NaAlCl4/ZSM-5 catalyst was higher than AlCl3/ZSM-5 catalyst; catalytic effect of NaAlCl4/Mg-ZSM-5 catalyst was not as good as AlCl3/ZSM-5 catalyst, which activation energy of rate-determining step in main reaction was 163 kJ mol-1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Yang, L. Wang, H. Zhang, T.F. Fan and B.R. Chen, Sci. Conserv. Archaeol., 25, 35 (2013).
- A.V. Ivanov, G.W. Graham and M. Shelef, Appl. Catal. B, 21, 243 (1999); doi:10.1016/S0926-3373(99)00021-1.
- W.Y. Xu, F.Y. Li, L.F. Wang and S.G. Hong, J. Chem. Online, 66, w111 (2003).
- W.Y. Xu, W. Hao, Y. Zhong, Z.Y. He, J.P. Liu, L.Z. Zheng and L. Hu, J. Zhejiang Univ. (Sci. Ed.), 37, 72 (2010).
- G.L. Yu, W.H. Xie and S. Yong, Appl. Catal. A, 150, 231 (1997); doi:10.1016/S0926-860X(96)00239-6.
- R. Jasinski and A. Baranski, Turk. J. Chem., 37, 848 (2013); doi:10.3906/kim-1208-13.
- D.A. da Silva Filho, P.H. de Oliveira Neto, M.C.R. Delgado, J.T. Lopez-Navarrete and J. Casado, MRS Proc., vol. 1568 (2013); doi:10.1557/opl.2013.1027.
- Y.H. Qu and L.M. Li, Chinese J. Struct. Chem., 32, 1279 (2013).
- Y.F. Bao, Z.Z. Liu, D.S. Liu, X.W. Ge, Chinese J. Struct. Chem., 32, 1384 (2013).
- H. Roohi and M. Jahantab, Comput. Theoret. Chem., 1066, 76 (2015); doi:10.1016/j.comptc.2015.05.015.
- J.T. Kelly, C.N. Sechrist and S. William, Hydrocarbon Conversion Catalyst, US Patent 3248343 (1966).
- J. Bassett, C. Naccache, M.V. Mathieu and M. Prettre, J. Chim. Phys. Physiochim. Biol., 66, 1522 (1969).
- N.C. Baenziger, Acta Cryst., 4, 216 (1951); doi:10.1107/S0365110X5100074X.
References
J.Y. Yang, L. Wang, H. Zhang, T.F. Fan and B.R. Chen, Sci. Conserv. Archaeol., 25, 35 (2013).
A.V. Ivanov, G.W. Graham and M. Shelef, Appl. Catal. B, 21, 243 (1999); doi:10.1016/S0926-3373(99)00021-1.
W.Y. Xu, F.Y. Li, L.F. Wang and S.G. Hong, J. Chem. Online, 66, w111 (2003).
W.Y. Xu, W. Hao, Y. Zhong, Z.Y. He, J.P. Liu, L.Z. Zheng and L. Hu, J. Zhejiang Univ. (Sci. Ed.), 37, 72 (2010).
G.L. Yu, W.H. Xie and S. Yong, Appl. Catal. A, 150, 231 (1997); doi:10.1016/S0926-860X(96)00239-6.
R. Jasinski and A. Baranski, Turk. J. Chem., 37, 848 (2013); doi:10.3906/kim-1208-13.
D.A. da Silva Filho, P.H. de Oliveira Neto, M.C.R. Delgado, J.T. Lopez-Navarrete and J. Casado, MRS Proc., vol. 1568 (2013); doi:10.1557/opl.2013.1027.
Y.H. Qu and L.M. Li, Chinese J. Struct. Chem., 32, 1279 (2013).
Y.F. Bao, Z.Z. Liu, D.S. Liu, X.W. Ge, Chinese J. Struct. Chem., 32, 1384 (2013).
H. Roohi and M. Jahantab, Comput. Theoret. Chem., 1066, 76 (2015); doi:10.1016/j.comptc.2015.05.015.
J.T. Kelly, C.N. Sechrist and S. William, Hydrocarbon Conversion Catalyst, US Patent 3248343 (1966).
J. Bassett, C. Naccache, M.V. Mathieu and M. Prettre, J. Chim. Phys. Physiochim. Biol., 66, 1522 (1969).
N.C. Baenziger, Acta Cryst., 4, 216 (1951); doi:10.1107/S0365110X5100074X.