Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Poly(styrene) Beads Grafted with Dendrimer Stabilized Gold Nanoparticles for Catalytic Reduction of 4-Nitrophenol
Corresponding Author(s) : Jimin Xie
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Four types of new bead-shaped heterogeneous nanoparticle catalysts viz., polymer-supported poly(styrene) beads grafted with poly(propylene imine) dendrimer(G2) (PPI-G2) stabilized gold nanoparticles (AuNPs) viz., PS-PVBC-PPI(G2)-AuNPs-L & PS-P4VP-PPI(G2)-AuNPs-L and PSPVBC- PPI(G2)-AuNPs-H & PS-P4VP-PPI(G2)-AuNPs-H were prepared by varying the metal load 5.7 × 10-3 mM (low metal load -L) and 11.4 10-3 mM (high metal load -H) respectively. Initially, two different insoluble matrices including poly(styrene)-co-poly(vinylbenzyl chloride) (PS-PVBC) grafted with PPI(G2) and poly(styrene)-co-poly(4-vinylpyridine) (PS-P4VP) grafted with PPI(G2) dendrimer were prepared individually by suspension polymerization method and then the epoxy group was generated on both matrix via atom transfer radical polymerization (ATRP) and quaternization methods. The resulting matrixes grafted with PPI(G2) was stabilized individually with the addition of HAuCl4 and thus obtained four types of new heterogeneous nanoparticle catalysts. These catalysts were characterized with UV-visible, FTIR, SEM, HRTEM & EDS techniques and their catalytic potential were examined by reduction of 4-nitrophenol as a model reaction under pseudo first order reaction condition. The obtained rate constant (kobs) values revealed that the catalysts derived from ATRP method viz., PS-PVBC-PPI(G2)-AuNPs-H and PS-PVBC-PPI(G2)-AuNPs-L has shown 6 and 4 fold active than the catalysts derived from quaternized method viz., PS-P4VP-PPI(G2)-AuNPs-H and PS-P4VPPPI( G2)-AuNPs-L respectively. The reusability of the superior catalyst was verified for the same reaction and proved the activity was sustained up to fourth cycle.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Mahmoud and M.A. El-Sayed, J. Phys. Chem. A, 111, 17180 (2007); https://doi.org/10.1021/jp709735n.
- S. Praharaj, S. Nath, S.K. Ghosh, S. Kundu and P. Pal, Langmuir, 20, 9889 (2004); https://doi.org/10.1021/la0486281.
- A. Köckritz, M. Sebek, A. Dittmar, J. Radnik, A. Brückner, U. Bentrup, M.-M. Pohl, H. Hugl and W. Mägerlein, J. Mol. Catal. Chem., 246, 85 (2006); https://doi.org/10.1016/j.molcata.2005.10.020.
- A.G. Boudjahem, S. Monteverdi, M. Mercy and M.M. Bettahar, J. Catal., 221, 325 (2004); https://doi.org/10.1016/j.jcat.2003.08.002.
- D. Astruc, F. Lu and J.R. Aranzaes, Angew. Chem. Int. Ed., 44, 7852 (2005); https://doi.org/10.1002/anie.200500766.
- B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam and B. Sreedhar, J. Am. Chem. Soc., 124, 14127 (2002); https://doi.org/10.1021/ja026975w.
- K. Mallick and M.S. Scurrell, J. Appl. Catal. A, 253, 527 (2003); https://doi.org/10.1016/S0926-860X(03)00552-0.
- Z. Liu, J.Y. Lee, W. Chen, M. Han and L.M. Gan, Langmuir, 20, 181 (2004); https://doi.org/10.1021/la035204i.
- K. Suzuki, T. Yumura, M. Mizuguchi, Y. Tanaka, C.W. Chen and M.J. Akashi, J. Appl. Polym. Sci., 77, 2678 (2000); https://doi.org/10.1002/1097-4628(20000919)77:12<2678::AIDAPP150>3.0.CO;2-9.
- C.W. Chen, M.Q. Chen, T. Serizawa and M. Akashi, Chem. Commun., 831 (1998); https://doi.org/10.1039/a800203g.
- C.W. Chen, T. Serizawa and M. Akashi, Chem. Mater., 11, 1381 (1999); https://doi.org/10.1021/cm9900047.
- M.T. Greci, S. Pathak, K. Mercado, G.K.S. Prakash, M.E. Thompson and G.A. Olah, J. Nanosci. Nanotechnol., 1, 3 (2001); https://doi.org/10.1166/jnn.2001.001.
- E. Murugan and J.N. Jebaranjitham, J. Mol. Catal. Chem., 365, 128 (2012); https://doi.org/10.1016/j.molcata.2012.08.021.
- E. Murugan and R. Rangasamy, J. Polym. Sci. A Polym. Chem., 48, 2525 (2010); https://doi.org/10.1002/pola.24028.
- R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter and M.J. Natan, Science, 267, 1629 (1995); https://doi.org/10.1126/science.267.5204.1629.
- G. Chumanov, K. Sokolov, B.W. Gregory and T.M. Cotton, J. Phys. Chem., 99, 9466 (1995); https://doi.org/10.1021/j100023a025.
- K.C. Grabar, R.G. Freeman, M.B. Hommer and M.J. Natan, Anal. Chem., 67, 735 (1995); https://doi.org/10.1021/ac00100a008.
- W. Fritzsche, K. Sokolov, G.D. Chumanov, T.M. Cotton and E. Henderson, J. Vac. Sci. Technol., 14, 1766 (1996); https://doi.org/10.1116/1.580334.
- M.M. Feldstein, V.G. Kulichikhin, S.V. Kotomin, T.A. Borodulina, M.B. Novikov, A. Roos and C. Creton, J. Appl. Polym. Sci., 100, 522 (2006); https://doi.org/10.1002/app.23290.
- P. Liu, Y. Liu and Z. Su, Ind. Eng. Chem., 45, 2255 (2006); https://doi.org/10.1021/ie051247d.
- R.B. Grubbs, C.J. Hawker, J. Dao and J.M. Frechet, Angew. Chem. Int. Ed. Engl., 36, 270 (1997); https://doi.org/10.1002/anie.199702701.
- P. Liu, Eur. Polym. J., 41, 2693 (2005); https://doi.org/10.1016/j.eurpolymj.2005.05.017.
- T. Balakrishnan and E. Murugan, J. Polym. Sci. A Polym. Chem., 41, 347 (2003); https://doi.org/10.1002/pola.10562.
- A. Murugan and P. Gopinath, J. Appl. Catal. A, 319, 72 (2007); https://doi.org/10.1016/j.apcata.2006.11.012.
- Y. Du, H. Chen, R. Chen and N. Xu, J. Appl. Catal. A, 277, 259 (2004); https://doi.org/10.1016/j.apcata.2004.09.018.
- M.J. Vaidya, S.M. Kulkarni and R.V. Chaudhari, Org. Process Res. Dev., 7, 202 (2003); https://doi.org/10.1021/op025589w.
- P.C. Kearney and D.D. Kaufman, Herbicides: Chemistry, Degradation and Mode of Action, Marcel Dekker, Inc.: New York (1976).
- N.G. McCormick, F.E. Feeherry and H.S. Levinson, Appl. Environ. Microbiol., 31, 949 (1976).
- H. Terada, Biochim. Biophys. Acta, 639, 225 (1981); https://doi.org/10.1016/0304-4173(81)90011-2.
- T. Balakrishnan and W.T. Ford, J. Appl. Polym. Sci., 27, 133 (1982); https://doi.org/10.1002/app.1982.070270115.
- S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S.K. Ghosh and T. Pal, J. Phys.Chem. C, 111, 4596 (2007); https://doi.org/10.1021/jp067554u.
- Y.-C. Chang and D.-H. Chen, J. Hazard. Mater., 165, 664 (2009); https://doi.org/10.1016/j.jhazmat.2008.10.034.
- N.C. Antonels and R. Meijboom, Langmuir, 29, 13433 (2013); https://doi.org/10.1021/la402885k.
- A. Henglein, Chem. Rev., 89, 1861 (1989); https://doi.org/10.1021/cr00098a010.
- K.S. Shin, J.Y. Choi, C.S. Park, H.J. Jang and K. Kim, Catal. Lett., 133, 1 (2009); https://doi.org/10.1007/s10562-009-0124-7.
- S.K. Ghosh, M. Mandal, S. Kundu, S. Nath and T. Pal, Appl. Catal A, Gen., 268, 61 (2004); https://doi.org/10.1016/j.apcata.2004.03.017.
References
M.A. Mahmoud and M.A. El-Sayed, J. Phys. Chem. A, 111, 17180 (2007); https://doi.org/10.1021/jp709735n.
S. Praharaj, S. Nath, S.K. Ghosh, S. Kundu and P. Pal, Langmuir, 20, 9889 (2004); https://doi.org/10.1021/la0486281.
A. Köckritz, M. Sebek, A. Dittmar, J. Radnik, A. Brückner, U. Bentrup, M.-M. Pohl, H. Hugl and W. Mägerlein, J. Mol. Catal. Chem., 246, 85 (2006); https://doi.org/10.1016/j.molcata.2005.10.020.
A.G. Boudjahem, S. Monteverdi, M. Mercy and M.M. Bettahar, J. Catal., 221, 325 (2004); https://doi.org/10.1016/j.jcat.2003.08.002.
D. Astruc, F. Lu and J.R. Aranzaes, Angew. Chem. Int. Ed., 44, 7852 (2005); https://doi.org/10.1002/anie.200500766.
B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam and B. Sreedhar, J. Am. Chem. Soc., 124, 14127 (2002); https://doi.org/10.1021/ja026975w.
K. Mallick and M.S. Scurrell, J. Appl. Catal. A, 253, 527 (2003); https://doi.org/10.1016/S0926-860X(03)00552-0.
Z. Liu, J.Y. Lee, W. Chen, M. Han and L.M. Gan, Langmuir, 20, 181 (2004); https://doi.org/10.1021/la035204i.
K. Suzuki, T. Yumura, M. Mizuguchi, Y. Tanaka, C.W. Chen and M.J. Akashi, J. Appl. Polym. Sci., 77, 2678 (2000); https://doi.org/10.1002/1097-4628(20000919)77:12<2678::AIDAPP150>3.0.CO;2-9.
C.W. Chen, M.Q. Chen, T. Serizawa and M. Akashi, Chem. Commun., 831 (1998); https://doi.org/10.1039/a800203g.
C.W. Chen, T. Serizawa and M. Akashi, Chem. Mater., 11, 1381 (1999); https://doi.org/10.1021/cm9900047.
M.T. Greci, S. Pathak, K. Mercado, G.K.S. Prakash, M.E. Thompson and G.A. Olah, J. Nanosci. Nanotechnol., 1, 3 (2001); https://doi.org/10.1166/jnn.2001.001.
E. Murugan and J.N. Jebaranjitham, J. Mol. Catal. Chem., 365, 128 (2012); https://doi.org/10.1016/j.molcata.2012.08.021.
E. Murugan and R. Rangasamy, J. Polym. Sci. A Polym. Chem., 48, 2525 (2010); https://doi.org/10.1002/pola.24028.
R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter and M.J. Natan, Science, 267, 1629 (1995); https://doi.org/10.1126/science.267.5204.1629.
G. Chumanov, K. Sokolov, B.W. Gregory and T.M. Cotton, J. Phys. Chem., 99, 9466 (1995); https://doi.org/10.1021/j100023a025.
K.C. Grabar, R.G. Freeman, M.B. Hommer and M.J. Natan, Anal. Chem., 67, 735 (1995); https://doi.org/10.1021/ac00100a008.
W. Fritzsche, K. Sokolov, G.D. Chumanov, T.M. Cotton and E. Henderson, J. Vac. Sci. Technol., 14, 1766 (1996); https://doi.org/10.1116/1.580334.
M.M. Feldstein, V.G. Kulichikhin, S.V. Kotomin, T.A. Borodulina, M.B. Novikov, A. Roos and C. Creton, J. Appl. Polym. Sci., 100, 522 (2006); https://doi.org/10.1002/app.23290.
P. Liu, Y. Liu and Z. Su, Ind. Eng. Chem., 45, 2255 (2006); https://doi.org/10.1021/ie051247d.
R.B. Grubbs, C.J. Hawker, J. Dao and J.M. Frechet, Angew. Chem. Int. Ed. Engl., 36, 270 (1997); https://doi.org/10.1002/anie.199702701.
P. Liu, Eur. Polym. J., 41, 2693 (2005); https://doi.org/10.1016/j.eurpolymj.2005.05.017.
T. Balakrishnan and E. Murugan, J. Polym. Sci. A Polym. Chem., 41, 347 (2003); https://doi.org/10.1002/pola.10562.
A. Murugan and P. Gopinath, J. Appl. Catal. A, 319, 72 (2007); https://doi.org/10.1016/j.apcata.2006.11.012.
Y. Du, H. Chen, R. Chen and N. Xu, J. Appl. Catal. A, 277, 259 (2004); https://doi.org/10.1016/j.apcata.2004.09.018.
M.J. Vaidya, S.M. Kulkarni and R.V. Chaudhari, Org. Process Res. Dev., 7, 202 (2003); https://doi.org/10.1021/op025589w.
P.C. Kearney and D.D. Kaufman, Herbicides: Chemistry, Degradation and Mode of Action, Marcel Dekker, Inc.: New York (1976).
N.G. McCormick, F.E. Feeherry and H.S. Levinson, Appl. Environ. Microbiol., 31, 949 (1976).
H. Terada, Biochim. Biophys. Acta, 639, 225 (1981); https://doi.org/10.1016/0304-4173(81)90011-2.
T. Balakrishnan and W.T. Ford, J. Appl. Polym. Sci., 27, 133 (1982); https://doi.org/10.1002/app.1982.070270115.
S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S.K. Ghosh and T. Pal, J. Phys.Chem. C, 111, 4596 (2007); https://doi.org/10.1021/jp067554u.
Y.-C. Chang and D.-H. Chen, J. Hazard. Mater., 165, 664 (2009); https://doi.org/10.1016/j.jhazmat.2008.10.034.
N.C. Antonels and R. Meijboom, Langmuir, 29, 13433 (2013); https://doi.org/10.1021/la402885k.
A. Henglein, Chem. Rev., 89, 1861 (1989); https://doi.org/10.1021/cr00098a010.
K.S. Shin, J.Y. Choi, C.S. Park, H.J. Jang and K. Kim, Catal. Lett., 133, 1 (2009); https://doi.org/10.1007/s10562-009-0124-7.
S.K. Ghosh, M. Mandal, S. Kundu, S. Nath and T. Pal, Appl. Catal A, Gen., 268, 61 (2004); https://doi.org/10.1016/j.apcata.2004.03.017.