Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis, Characterization and Antimicrobial Activity Studies of Salicylalchitosan Biofunctionalized Copper Oxide Nanoparticles
Corresponding Author(s) : M. Muhamed Haneefa
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
In the present work, we reported the green synthesis of biofunctionalized copper oxide nanoparticles with salicylalchitosan derived from chitosan. Salicylalchitosan, copper oxide nanoparticles and biofunctionalized nanoparticles were characterized by UV-visible, FT-IR, SEM and TEM techniques and antimicrobial activity studies of those were undertaken. The size of synthesized copper oxide nanoparticles was in the ranges around 60 to 100 nm and bio functionalized particles were about 100 nm. The antimicrobial activities of biofunctionalized copper oxide nanoparticles were observed higher inhibition activity than the non-functionalized nanoparticles and salicylalchitosan against standard microbial species.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S.R. Challa Kumar, Biological and Pharmaceutical Nanomaterials, Wiley-VCH Verlag GmbH Co., KGaA, Weinheim, vol. 2, p. 366 (2005).
- H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed., 49, 1362 (2010); doi:10.1002/anie.200903053.
- O. Veiseh, J.W. Gunn and M.Q. Zhang, Adv. Drug Deliv. Rev., 62, 284 (2010); doi:10.1016/j.addr.2009.11.002.
- E. Katz and I. Willner, Angew. Chem. Int. Ed., 43, 6042 (2004); doi:10.1002/anie.200400651.
- Z. Liu, F. Kiessling and J. Gatjens, J. Nanomater., 89, 4303 (2010).
- V. Bansal, P.K. Sharma, N. Sharma, O.P. Pal and R. Malviya, Adv. Biol. Res., 5, 28 (2011).
- A. Abdulkarim, M.T. Isa, A. Surajudeen, A.J. Mohammed and A.O. Ameh, Civil Environ. Res., 3, 108 (2013).
- M.T. Isa, A.O. Ameh, M. Tijjani and K.K. Adama, Int. J. Biol. Chem. Sci., 6, 446 (2012).
- M.H. Kim, B. Lim, E.P. Lee and Y. Xia, J. Mater. Chem., 18, 4069 (2008); doi:10.1039/b805913f.
- N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, Chem. Mater., 17, 5255 (2005); doi:10.1021/cm0505244.
- Z. Li, D. Lee, X. Sheng, R.E. Cohen and M.F. Rubner, Langmuir, 22, 9820 (2006); doi:10.1021/la0622166.
- V.K. Sharma, R.A. Yngard and Y. Lin, Colloid. Interf. Sci., 145, 83 (2009); doi:10.1016/j.cis.2008.09.002.
- K.S. Kavitha, S. Baker, D. Rakshith, H.U. Kavitha, H.C. Yashavantha Rao, B.P. Harini and S. Satish, Int. Res. J. Biol. Sci., 2, 66 (2013).
- O. Benavente-García, J. Castillo, F.R. Marin, A. Ortuño and J.A. Del Río, J. Agric. Food Chem., 45, 4505 (1997); doi:10.1021/jf970373s.
- J.A. Vinson, X. Su, L. Zubik and P. Bose, J. Agric. Food Chem., 49, 5315 (2001); doi:10.1021/jf0009293.
- K. Priyadarsini, D. Maity, G.H. Naik, M.S. Kumar, M.K. Unnikrishnan, J.G. Satav and H. Mohan, Free Radic. Biol. Med., 35, 475 (2003); doi:10.1016/S0891-5849(03)00325-3.
- A.-M. Katsori, M. Chatzopoulou, K. Dimas, C. Kontogiorgis, A. Patsilinakos, T. Trangas and D. Hadjipavlou-Litina, Eur. J. Med. Chem., 46, 2722 (2011);doi:10.1016/j.ejmech.2011.03.060.
- S. Tharakan, T. Inamoto, B. Sung, B.B. Aggarwal and A.M. Kamat, Biochem. Pharmacol., 79, 218 (2010); doi:10.1016/j.bcp.2009.08.007.
- V. Gupta, A. Sharma, R. Sharma, S. Diwan and S. Saini, Int. J. Natural Prod. Res., 4, 82 (2014); doi:10.2174/221031550402141009095854.
- J. Brine and R. Austin, Comp. Biochem. Physiol. Part B, 70, 173 (1981); doi:10.1016/0305-0491(81)90031-6.
- R.A.A. Muzzarelli, C. Jeuniaux and G.W. Gooday, Chitin in Nature and Technology, Plenum, New York, USA, p. 403 (1986).
- M. Jayandran and M.M. Haneefa, Chem. Sci. Rev. Lett., 3, 1050 (2014).
- A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).
- B.P.F.A. Gomes, C.C.R. Ferraz, M.E. Vianna, P.L. Rosalen, A.A. Zaia, F.B. Teixeira and F.J. Souza-Filho, Braz. Dent. J., 13, 155 (2002); doi:10.1590/S0103-64402002000300002.
- Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane and B. Ihssane, Appl. Nanosci., 4, 571 (2014); doi:10.1007/s13204-013-0233-x.
- T.X. Phuo and M.K. Chyu, J. Nanosci. Nanotechnol., 1, 101 (2013).
- M. Jayandran M.M. Haneefa and V. Balasubramanian, J. Chem. Pharm. Res., 7, 251 (2015).
References
S.S.R. Challa Kumar, Biological and Pharmaceutical Nanomaterials, Wiley-VCH Verlag GmbH Co., KGaA, Weinheim, vol. 2, p. 366 (2005).
H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed., 49, 1362 (2010); doi:10.1002/anie.200903053.
O. Veiseh, J.W. Gunn and M.Q. Zhang, Adv. Drug Deliv. Rev., 62, 284 (2010); doi:10.1016/j.addr.2009.11.002.
E. Katz and I. Willner, Angew. Chem. Int. Ed., 43, 6042 (2004); doi:10.1002/anie.200400651.
Z. Liu, F. Kiessling and J. Gatjens, J. Nanomater., 89, 4303 (2010).
V. Bansal, P.K. Sharma, N. Sharma, O.P. Pal and R. Malviya, Adv. Biol. Res., 5, 28 (2011).
A. Abdulkarim, M.T. Isa, A. Surajudeen, A.J. Mohammed and A.O. Ameh, Civil Environ. Res., 3, 108 (2013).
M.T. Isa, A.O. Ameh, M. Tijjani and K.K. Adama, Int. J. Biol. Chem. Sci., 6, 446 (2012).
M.H. Kim, B. Lim, E.P. Lee and Y. Xia, J. Mater. Chem., 18, 4069 (2008); doi:10.1039/b805913f.
N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, Chem. Mater., 17, 5255 (2005); doi:10.1021/cm0505244.
Z. Li, D. Lee, X. Sheng, R.E. Cohen and M.F. Rubner, Langmuir, 22, 9820 (2006); doi:10.1021/la0622166.
V.K. Sharma, R.A. Yngard and Y. Lin, Colloid. Interf. Sci., 145, 83 (2009); doi:10.1016/j.cis.2008.09.002.
K.S. Kavitha, S. Baker, D. Rakshith, H.U. Kavitha, H.C. Yashavantha Rao, B.P. Harini and S. Satish, Int. Res. J. Biol. Sci., 2, 66 (2013).
O. Benavente-García, J. Castillo, F.R. Marin, A. Ortuño and J.A. Del Río, J. Agric. Food Chem., 45, 4505 (1997); doi:10.1021/jf970373s.
J.A. Vinson, X. Su, L. Zubik and P. Bose, J. Agric. Food Chem., 49, 5315 (2001); doi:10.1021/jf0009293.
K. Priyadarsini, D. Maity, G.H. Naik, M.S. Kumar, M.K. Unnikrishnan, J.G. Satav and H. Mohan, Free Radic. Biol. Med., 35, 475 (2003); doi:10.1016/S0891-5849(03)00325-3.
A.-M. Katsori, M. Chatzopoulou, K. Dimas, C. Kontogiorgis, A. Patsilinakos, T. Trangas and D. Hadjipavlou-Litina, Eur. J. Med. Chem., 46, 2722 (2011);doi:10.1016/j.ejmech.2011.03.060.
S. Tharakan, T. Inamoto, B. Sung, B.B. Aggarwal and A.M. Kamat, Biochem. Pharmacol., 79, 218 (2010); doi:10.1016/j.bcp.2009.08.007.
V. Gupta, A. Sharma, R. Sharma, S. Diwan and S. Saini, Int. J. Natural Prod. Res., 4, 82 (2014); doi:10.2174/221031550402141009095854.
J. Brine and R. Austin, Comp. Biochem. Physiol. Part B, 70, 173 (1981); doi:10.1016/0305-0491(81)90031-6.
R.A.A. Muzzarelli, C. Jeuniaux and G.W. Gooday, Chitin in Nature and Technology, Plenum, New York, USA, p. 403 (1986).
M. Jayandran and M.M. Haneefa, Chem. Sci. Rev. Lett., 3, 1050 (2014).
A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).
B.P.F.A. Gomes, C.C.R. Ferraz, M.E. Vianna, P.L. Rosalen, A.A. Zaia, F.B. Teixeira and F.J. Souza-Filho, Braz. Dent. J., 13, 155 (2002); doi:10.1590/S0103-64402002000300002.
Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane and B. Ihssane, Appl. Nanosci., 4, 571 (2014); doi:10.1007/s13204-013-0233-x.
T.X. Phuo and M.K. Chyu, J. Nanosci. Nanotechnol., 1, 101 (2013).
M. Jayandran M.M. Haneefa and V. Balasubramanian, J. Chem. Pharm. Res., 7, 251 (2015).