Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Multi-step Ageing on Corrosion Resistance and Thermal Stability of Al-Li Binary System
Corresponding Author(s) : Chang-Suk Han
Asian Journal of Chemistry,
Vol. 28 No. 7 (2016): Vol 28 Issue 7
Abstract
Effect of multi-step ageing of Al-Li system influences the decomposition of the solid solution at the first step on morphology of precipitates at the following steps. It results in a decrease of size and increase in the volume fraction of strengthening phases. The uniform distribution of precipitates also eliminates formation of non-desirable phases or provides a discreteness to stable phase precipitates along the grain boundary and a decrease of the width of precipitates free zone along the boundary. Usage of multi-step ageing regimes allows to increases fracture toughness, corrosion resistance and thermal stability in comparison with the one-step ageing for Al-Li system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.L. Zhang, H.P. Guo and Z.Q. Li, Adv. Mater. Manuf. Proc., 434 (2011).
- V. Rajendran, S. Muthu Kumaran, T. Jayakumar, P. Palanichamy, P. Shankar and B. Raj, J. Alloys Comp., 478, 147 (2009); doi:10.1016/j.jallcom.2008.11.067.
- T. Kobayashi and H.J. Kim, Met. Mater. Int., 5, 303 (1999); doi:10.1007/BF03026083.
- J.M. Silcock, J. Inst. Met., 88, 359 (1959).
- J.M. Fragomeni, R. Wheeler and K.V. Jata, J. Adv. Mater., 38, 58 (2006).
- H. Suzuki, M. Kanno and N. Hayashi, J. Jpn. Inst. Light Metals, 31, 122 (1981); doi:10.2464/jilm.31.122.
- D.B. Williams and J.W. Edington, Metal Sci., 9, 529 (1975); doi:10.1179/030634575790445143.
- S. Giribaskar, Gouthama and R. Prasad, Mater. Sci. Forum, 584/586, 411 (2008); doi:10.4028/www.scientific.net/MSF.584-586.411.
- T.H. Sanders and B.A. Stalks, Acta Metall., 30, 927 (1982); doi:10.1016/0001-6160(82)90199-7.
- J.T.M. De Hosson, A. Huis in’t Veld, H. Tamler and O. Kanert, Acta Metall., 32, 1205 (1984); doi:10.1016/0001-6160(84)90127-5.
- X. Zhang, Z. Luo, Y. Du and L. Ye, Mater. Heat Treat., 28, 55 (2007).
- A. Deschamps, B. Decreus, F. De Geuser, T. Dorin and M. Weyland, Acta Mater., 61, 4010 (2013); doi:10.1016/j.actamat.2013.03.015.
- Y.H. Zhu, W.B. Lee and S. To, J. Aero. Mater., 23, 6 (2003); doi:10.1016/S0921-5093(02)00252-6.
- Z.L. Du, W.D. Zeng, W.H. Yang, C. Zhang, C.L. Shi, H.J. Wang and Z.P. Zhou, Mater. Sci. Technol., 30, 893 (2014); doi:10.1179/1743284713Y.0000000461.
- S. Ahmadi, H. Arabi and A. Shokuhfar, J. Alloys Comp., 484, 90 (2009); doi:10.1016/j.jallcom.2009.03.188.
- S.C. Wang and M.J. Starink, Int. Mater. Rev., 50, 193 (2005); doi:10.1179/174328005X14357.
- W.M. Rainforth and H. Jones, J. Mater. Sci. Lett., 16, 420 (1997); doi:10.1023/A:1018579302662.
- C. Zhou, X. Liu and Q. Pan, Chinese J. Rare Metals, 29, 837 (2005).
- T.E. Buchheit and J.A. Wert, Metall. Trans., A, Phys. Metall. Mater. Sci., 24, 853 (1993); doi:10.1007/BF02656506.
- V.G. Davydov, L.B. Ber, E.Y. Kaputkin, V.I. Komov, O.G. Ukolova and E.A. Lukina, Mater. Sci. Eng. A, 280, 76 (2000); doi:10.1016/S0921-5093(99)00659-0.
- H. Li, X. Zhang and M. Chen, Heat Treat. Metals, 29, 11 (2004).
- C. Zhang and L. Wang, Heat Treat. Metals, 30, 31 (2005).
- K.J. Duncan and J.W. Martin, J. Mater. Sci. Lett., 10, 1098 (1991); doi:10.1007/BF00720137.
- B. Noble, S.J. Harris and K. Dinsdale, Acta Mater., 45, 2069 (1997); doi:10.1016/S1359-6454(96)00294-7.
References
Y.L. Zhang, H.P. Guo and Z.Q. Li, Adv. Mater. Manuf. Proc., 434 (2011).
V. Rajendran, S. Muthu Kumaran, T. Jayakumar, P. Palanichamy, P. Shankar and B. Raj, J. Alloys Comp., 478, 147 (2009); doi:10.1016/j.jallcom.2008.11.067.
T. Kobayashi and H.J. Kim, Met. Mater. Int., 5, 303 (1999); doi:10.1007/BF03026083.
J.M. Silcock, J. Inst. Met., 88, 359 (1959).
J.M. Fragomeni, R. Wheeler and K.V. Jata, J. Adv. Mater., 38, 58 (2006).
H. Suzuki, M. Kanno and N. Hayashi, J. Jpn. Inst. Light Metals, 31, 122 (1981); doi:10.2464/jilm.31.122.
D.B. Williams and J.W. Edington, Metal Sci., 9, 529 (1975); doi:10.1179/030634575790445143.
S. Giribaskar, Gouthama and R. Prasad, Mater. Sci. Forum, 584/586, 411 (2008); doi:10.4028/www.scientific.net/MSF.584-586.411.
T.H. Sanders and B.A. Stalks, Acta Metall., 30, 927 (1982); doi:10.1016/0001-6160(82)90199-7.
J.T.M. De Hosson, A. Huis in’t Veld, H. Tamler and O. Kanert, Acta Metall., 32, 1205 (1984); doi:10.1016/0001-6160(84)90127-5.
X. Zhang, Z. Luo, Y. Du and L. Ye, Mater. Heat Treat., 28, 55 (2007).
A. Deschamps, B. Decreus, F. De Geuser, T. Dorin and M. Weyland, Acta Mater., 61, 4010 (2013); doi:10.1016/j.actamat.2013.03.015.
Y.H. Zhu, W.B. Lee and S. To, J. Aero. Mater., 23, 6 (2003); doi:10.1016/S0921-5093(02)00252-6.
Z.L. Du, W.D. Zeng, W.H. Yang, C. Zhang, C.L. Shi, H.J. Wang and Z.P. Zhou, Mater. Sci. Technol., 30, 893 (2014); doi:10.1179/1743284713Y.0000000461.
S. Ahmadi, H. Arabi and A. Shokuhfar, J. Alloys Comp., 484, 90 (2009); doi:10.1016/j.jallcom.2009.03.188.
S.C. Wang and M.J. Starink, Int. Mater. Rev., 50, 193 (2005); doi:10.1179/174328005X14357.
W.M. Rainforth and H. Jones, J. Mater. Sci. Lett., 16, 420 (1997); doi:10.1023/A:1018579302662.
C. Zhou, X. Liu and Q. Pan, Chinese J. Rare Metals, 29, 837 (2005).
T.E. Buchheit and J.A. Wert, Metall. Trans., A, Phys. Metall. Mater. Sci., 24, 853 (1993); doi:10.1007/BF02656506.
V.G. Davydov, L.B. Ber, E.Y. Kaputkin, V.I. Komov, O.G. Ukolova and E.A. Lukina, Mater. Sci. Eng. A, 280, 76 (2000); doi:10.1016/S0921-5093(99)00659-0.
H. Li, X. Zhang and M. Chen, Heat Treat. Metals, 29, 11 (2004).
C. Zhang and L. Wang, Heat Treat. Metals, 30, 31 (2005).
K.J. Duncan and J.W. Martin, J. Mater. Sci. Lett., 10, 1098 (1991); doi:10.1007/BF00720137.
B. Noble, S.J. Harris and K. Dinsdale, Acta Mater., 45, 2069 (1997); doi:10.1016/S1359-6454(96)00294-7.