Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Free-Radical Reactions
Corresponding Author(s) : Maher Khalid
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
This review highlights the most recent syntheses of free radical reactions, which included numerous processes (photoredox catalysis free-radical reactions, free-radical cascade processes reactions, Minisci-type free radical alkylation reactions and metal-catalysis free radical reactions). A photoredoxcatalyzed C–H functioning of aromatic heterocyclic utilizing an assortment of various, alkyltrifluoroborates has been mentioned. Utilizing organo-photocatalyst and a moderate oxidant, conditions malleable for functionalizing complex aromatic heterocyclics are outlined to prepare a oriental agent for late-stage derivatization. Radical alkylations of aromatic heterocyclic (Minisci reactions) appear a more direct functionalization of particular, C–H bonds. For the ground mentioned above, alkylation designing using radical have recently risen to significance for the late-stage functionalization of aromatic heterocyclic framework. Therefore, this issue is the primary point of the present survey, which thinks about work from the most recent five years. The work is ordered by the key procedures associated with the synthesis of free-radical reactions, planning to give researchers a simple comprehension of this free radical–reactions-based science and to give bits of knowledge to provide insights for further investigations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- (a) Y. Hong, G.H. Zhang, Y. Liu and H. Yan, Chem. Rev., 117, 12584 (2017); https://doi.org/10.1021/acs.chemrev.6b00825. (b) G. Brahmachari and B. Banerjee, Chem. Eng., 2, 411 (2014); https://doi.org/10.1021/sc400312n.
- C. Chatgilialoglu and A. Studer, Encyclopedia of Radicals in Chemistry, Biology and Materials; Wiley: Chichester, UK, vols. 1 and 2 (2012).
- M. Heinrich and A. Gansäuer, Topics in Current Chemistry: Radicals in Synthesis III; Springer-Verlag: Berlin, Germany, vol. 320 (2012).
- S.-X. Xiao, C.-S. Li and Y.-L. Huang, Carbon Materials, In: Modern Inorganic Synthetic Chemistry, Elsevier, edn 2, Chap. 16, edn 2, pp. 429-462 (2017);
- M. Tojino and I. Ryu, Free Radical Mediated Multicomponent Coupling Reactions, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 169-198 (2005).
- A.J. McCarroll and J.C. Walton, Angew. Chem. Int. Ed., 40, 2224 (2001); https://doi.org/10.1002/1521-3773(20010618)40:12<2224::AIDANIE2224>3.0.CO;2-F.
- (a) J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley-VCH: Weinheim (2005). (b) L.F. Tietze, D.G. Brasche and K.M. Gericke, Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim (2007); (c) H. Pellissier, Chem. Rev., 113, 442 (2013); https://doi.org/10.1021/cr300271k. (d) U. Wille, Chem. Rev., 113, 813 (2013); https://doi.org/10.1021/cr100359d.
- E. Godineau and Y. Landais, Chem. Eur. J., 15, 3044 (2009); https://doi.org/10.1002/chem.200802415.
- H.C. Kolb, M.G. Finn and K.B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AIDANIE2004>3.0.CO;2-5.
- E.M. Sletten and C.R. Bertozzi, Angew. Chem. Int. Ed., 48, 6974 (2009); https://doi.org/10.1002/anie.200900942.
- (a) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi and A. Lei, Chem. Rev., 115, 12138 (2015); https://doi.org/10.1021/cr500431s. (b) L. Yang and H. Huang, Chem. Rev., 115, 3468 (2015); https://doi.org/10.1021/cr500610p. (c) X.-X. Guo, D.-W. Gu, Z. Wu and W. Zhang, Chem. Rev., 115, 1622 (2015); https://doi.org/10.1021/cr500410y. (d) Q.-Z. Zheng and N. Jiao, Chem. Soc. Rev., 45, 4590 (2016); https://doi.org/10.1039/C6CS00107F.
- (a) Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai and J.-Q. Yu, Nature, 515, 389 (2014); https://doi.org/10.1038/nature13885. (b) J.-Q. Yu, Adv. Synth. Catal., 356, 1393 (2014); https://doi.org/10.1002/adsc.201400406. (c) K. Navid, Org. Synth., 92, 58 (2015); https://doi.org/10.15227/orgsyn.092.0058.
- X. Shang and Z.-Q. Liu, Acta Chim. Sin., 73, 1275 (2015); https://doi.org/10.6023/A15060407.
- J.F. Hartwig, J. Am. Chem. Soc., 138, 2 (2016); https://doi.org/10.1021/jacs.5b08707.
- (a) W.-M. Zhao, X.-L. Chen, J.-W. Yuan, L.-B. Qu, L.-K. Duan and Y.-F. Zhao, Chem. Commun., 50, 2018 (2014); https://doi.org/10.1039/c3cc48069k. (b) R. Xia, M.-S. Xie, H.-Y. Niu, G.-R. Qu and H.-M. Guo, Org. Lett., 16, 444 (2014); https://doi.org/10.1021/ol4033336.
- T. McCallum and L. Barriault, Chem. Sci., 7, 4754 (2016); https://doi.org/10.1039/C6SC00807K.
- V. Liautard and Y., Landais, eds.: J. Zhu, Q. Wang and M.-X. Wang, Wiley-VCH: Weinheim, Chap. 14, p. 401(2014); https://doi.org/10.1002/9783527678174.ch14.
- D.A. Dirocco, K. Dykstra, S. Krska, P. Vachal, D.V. Conway and M. Tudge, Angew. Chem. Int. Ed., 53, 4802 (2014); https://doi.org/10.1002/anie.201402023.
- J.B. Xia, C. Zhu and C. Chen, Chem. Commun., 50, 1170 (2014); https://doi.org/10.1039/C4CC05650G.
- S.D. Halperin, H. Fan, S. Chang, R.E. Martin and R.A. Britton, Angew. Chem. Int. Ed., 53, 4690 (2014); https://doi.org/10.1002/anie.201400420.
- J.G. West, T.A. Bedell and E.J. Sorensen, Angew. Chem. Int. Ed., 55, 8923 (2016); https://doi.org/10.1002/anie.201603149.
- J. Yang, J. Zhang, L. Qi, C. Hu and Y. Chen, Chem. Commun., 51, 5275 (2015); https://doi.org/10.1039/C4CC06344A.
- M.J. Schnermann and L.E. Overman, Angew. Chem. Int. Ed., 51, 9576 (2012); https://doi.org/10.1002/anie.201204977.
- J. Li, J. Zhang, H. Tan and D.Z. Wang, Org. Lett., 17, 2522 (2015); https://doi.org/10.1021/acs.orglett.5b01053.
- (a) G. Jalce, X. Franck and B. Figadère, Tetrahedron Asymm., 20, 2537 (2009); https://doi.org/10.1016/j.tetasy.2009.10.034. (b) I. Vilotijevic and T.F. Jamison, Angew. Chem. Int. Ed., 48, 5250 (2009); https://doi.org/10.1002/anie.200900600. (c) J.P. Wolfe and M.B. Hay, Tetrahedron, 63, 261 (2007); https://doi.org/10.1016/j.tet.2006.08.105.
- Z. Liu, L. Wang, D. Liu and Z. Wang, Synlett, 26, 2849 (2015); https://doi.org/10.1055/s-0035-1560661.
- Q.Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L. Lu and W.J. Xiao, Angew. Chem. Ed., 54, 11196 (2015); https://doi.org/10.1002/anie.201504559.
- F. Le Vaillant, M.D. Wodrich and J. Waser, Chem. Sci., 8, 1790 (2017); https://doi.org/10.1039/C6SC04907A.
- J. Xie, J. Yu, M. Rudolph, F. Rominger and A.S.K. Hashmi, Angew. Chem. Int. Ed., 55, 9416 (2016); https://doi.org/10.1002/anie.201602347.
- W. Li, Y. Duan, M. Zhang, J. Cheng and C. Zhu, Chem. Commun., 52, 7596 (2016); https://doi.org/10.1039/C6CC02027E.
- W.-M. Zhang, J.-J. Dai, J. Xu and H.-J. Xu, J. Org. Chem., 82, 2059 (2017); https://doi.org/10.1021/acs.joc.6b02891.
- L. Pitzer, F. Sandfort, F. Strieth-Kalthoff and F. Glorius, J. Am. Chem. Soc., 139, 13652 (2017); https://doi.org/10.1021/jacs.7b08086.
- A.C. Sun, E.J. McClain, J.W. Beatty and C.R.J. Stephenson, Org. Lett., 20, 3487 (2018); https://doi.org/10.1021/acs.orglett.8b01250.
- J. Li, Z. Wang, N. Wu, G. Gao and J. You, Chem. Commun., 50, 15049 (2014); https://doi.org/10.1039/C4CC07667B.
- H. Zhang, C. Pan, N. Jin, Z. Gu, H. Hu and C. Zhu, Chem. Commun., 51, 1320 (2015); https://doi.org/10.1039/C4CC08629E.
- C. Pan, H. Zhang and C. Zhu, Tetrahedron Lett., 57, 595 (2016); https://doi.org/10.1016/j.tetlet.2015.12.092.
- J. Wang, X.-Q. Mou, B.-H. Zhang, W.-T. Liu, C. Yang, L. Xu, Z.-L. Xu and S.-H. Wang, Tetrahedron Lett., 57, 1239 (2016); https://doi.org/10.1016/j.tetlet.2016.02.013.
- J.Y. Luo, H.L. Hua, Z.S. Chen, Z.Z. Zhou, Y.F. Yang, P.X. Zhou, Y.T. He, X.Y. Liu and Y.M. Liang, Chem. Commun., 50, 1564 (2014); https://doi.org/10.1039/c3cc48339h.
- M. Ueda, Y. Ito, Y. Ichii, M. Kakiuchi, H. Shono and O. Miyata, Chem. Eur. J., 20, 6763 (2014); https://doi.org/10.1002/chem.201402217.
- Z. Li, F. Fan, J. Yang and Z.-Q. Liu, Org. Lett., 16, 3396 (2014); https://doi.org/10.1021/ol501461u.
- B. Wyler, F. Brucelle and P. Renaud, Org. Lett., 18, 1370 (2016); https://doi.org/10.1021/acs.orglett.6b00306.
- W.-C. Yang, K. Wei, X. Sun, J. Zhu and L. Wu, Org. Lett., 20, 3144 (2018); https://doi.org/10.1021/acs.orglett.8b01278.
- H. Yi, X. Zhang, C. Qin, Z. Liao, J. Liu and A. Lei, Adv. Synth. Catal., 356, 2873 (2014); https://doi.org/10.1002/adsc.201400548.
- Z. Liao, H. Yi, Z. Li, C. Fan, X. Zhang, J. Liu, Z. Deng and A. Lei, Chem. Asian J., 10, 96 (2015); https://doi.org/10.1002/asia.201403097.
- C. Chatalova-Sazepin, Q. Wang, G.M. Sammis and J. Zhu, Angew. Chem. Int., 54, 5443 (2015); https://doi.org/10.1002/anie.201412357.
- H. Hassan, V. Pirenne, M. Wissing, C. Khiar, A. Hussain, F. Robert and Y. Landais, Chem. Eur. J., 23, 4651 (2017); https://doi.org/10.1002/chem.201605946.
- R. Beniazza, V. Liautard, C. Poittevin, B. Ovadia, S. Mohammed, F. Robert and Y. Landais, Chem. Eur. J., 23, 2439 (2017); https://doi.org/10.1002/chem.201605043.
- Z. Liu and Z.-Q. Liu, Org. Lett., 19, 5649 (2017); https://doi.org/10.1021/acs.orglett.7b02788.
- R. Pan, L. Hu, C. Han, A. Lin and H. Yao, Org. Lett., 20, 1974 (2018); https://doi.org/10.1021/acs.orglett.8b00518.
- F. Fontana, F. Minisci, M.C. Nogueira Barbosa and E. Vismara, J. Org. Chem., 56, 2866 (1991); https://doi.org/10.1021/jo00008a050.
- Y. Siddaraju, M. Lamani and K.R. Prabhu, J. Org. Chem., 79, 3856 (2014); https://doi.org/10.1021/jo500294z.
- J. Jin and D. MacMillan, Angew. Chem. Int. Ed. Engl., 54, 1565 (2015); https://doi.org/10.1002/anie.201410432.
- L. Zhang and Z.-Q. Liu, Org. Lett., 19, 6594 (2017); https://doi.org/10.1021/acs.orglett.7b03297.
- S. Bordi and J.T. Starr, Org. Lett., 19, 2290 (2017); https://doi.org/10.1021/acs.orglett.7b00833.
- T.C. Sherwood, N. Li, A.N. Yazdani and T.G.M. Dhar, J. Org. Chem., 83, 3000 (2018); https://doi.org/10.1021/acs.joc.8b00205.
- X. Sun, X. Li, S. Song, Y. Zhu, Y. Liang and N. Jiao, J. Am. Chem. Soc., 137, 6059 (2015); https://doi.org/10.1021/jacs.5b02347.
- X.W. Lan, N.X. Wang, W. Zhang, J.L. Wen, C.B. Bai, Y. Xing and Y.H. Li, Org. Lett., 17, 4460 (2015); https://doi.org/10.1021/acs.orglett.5b02116.
- L. Zhou, H. Yi, L. Zhu, X. Qi, H. Jiang, C. Liu, Y. Feng, Y. Lan and A. Lei, Sci. Rep., 5, 15934 (2015); https://doi.org/10.1038/srep15934.
- P.K. Chikkade, Y. Kuninobu and M. Kanai, Chem. Sci., 6, 3195 (2015); https://doi.org/10.1039/C5SC00238A.
- Y. Ma, D. Zhang, Z. Yan, M. Wang, C. Bian, X. Gao, E.E. Bunel and A. Lei, Org. Lett., 17, 2174 (2015); https://doi.org/10.1021/acs.orglett.5b00775.
- K.R. Babu, N. Zhu and H. Bao, Org. Lett., 19, 46 (2017); https://doi.org/10.1021/acs.orglett.6b03287.
- S. Tang, P. Wang, H. Li and A. Lei, Nat. Commun., 7, Article 11676 (2016); https://doi.org/10.1038/ncomms11676.
- B. Liang, Q. Wang and Z.Q. Liu, Org. Lett., 19, 6463 (2017); https://doi.org/10.1021/acs.orglett.7b03313.
- X.-B. Yan, Y.-W. Shen, D.-Q. Chen, P. Gao, Y.-X. Li, X.R. Song, X.-Y. Liu and Y.-M. Liang, Tetrahedron, 70, 7490 (2014); https://doi.org/10.1016/j.tet.2014.08.025.
- G. Kumar and G. Sekar, RSC Adv., 5, 28292 (2015); https://doi.org/10.1039/C4RA15162C.
- E. Kianmehr, S. Kazemi and A. Foroumadi, Tetrahedron, 70, 349 (2014); https://doi.org/10.1016/j.tet.2013.11.051.
- Y. Zhao, B. Huang, C. Yang and W. Xia, Org. Lett., 18, 3326 (2016); https://doi.org/10.1021/acs.orglett.6b01371.
- R. Jin and F.W. Patureau, Org. Lett., 18, 4491 (2016); https://doi.org/10.1021/acs.orglett.6b02223.
- C. Che, Z. Qian, M. Wu, Y. Zhao and G. Zhu, J. Org. Chem., 83, 5665 (2018); https://doi.org/10.1021/acs.joc.8b00666.
- R.J. Song, Y.Q. Tu, D.Y. Zhu, F.M. Zhang and S.H. Wang, Chem. Commun., 51, 749 (2015); https://doi.org/10.1039/C4CC08797F.
- R. Sakamoto, T. Kato, S. Sakurai and K. Maruoka, Org. Lett., 20, 1400 (2018); https://doi.org/10.1021/acs.orglett.8b00173.
- M. Banerjee, R. Mukhopadhyay, B. Achari and A.K. Banerjee, J. Org. Chem., 71, 2787 (2006); https://doi.org/10.1021/jo052589w.
- J. Ni, Y. Xue, L. Sun and A. Zhang, J. Org. Chem., 83, 4598 (2018); https://doi.org/10.1021/acs.joc.8b00341.
- P.S. Mahajan and S.B. Mhaske, Org. Lett., 20, 2092 (2018); https://doi.org/10.1021/acs.orglett.8b00652.
References
(a) Y. Hong, G.H. Zhang, Y. Liu and H. Yan, Chem. Rev., 117, 12584 (2017); https://doi.org/10.1021/acs.chemrev.6b00825. (b) G. Brahmachari and B. Banerjee, Chem. Eng., 2, 411 (2014); https://doi.org/10.1021/sc400312n.
C. Chatgilialoglu and A. Studer, Encyclopedia of Radicals in Chemistry, Biology and Materials; Wiley: Chichester, UK, vols. 1 and 2 (2012).
M. Heinrich and A. Gansäuer, Topics in Current Chemistry: Radicals in Synthesis III; Springer-Verlag: Berlin, Germany, vol. 320 (2012).
S.-X. Xiao, C.-S. Li and Y.-L. Huang, Carbon Materials, In: Modern Inorganic Synthetic Chemistry, Elsevier, edn 2, Chap. 16, edn 2, pp. 429-462 (2017);
M. Tojino and I. Ryu, Free Radical Mediated Multicomponent Coupling Reactions, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 169-198 (2005).
A.J. McCarroll and J.C. Walton, Angew. Chem. Int. Ed., 40, 2224 (2001); https://doi.org/10.1002/1521-3773(20010618)40:12<2224::AIDANIE2224>3.0.CO;2-F.
(a) J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley-VCH: Weinheim (2005). (b) L.F. Tietze, D.G. Brasche and K.M. Gericke, Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim (2007); (c) H. Pellissier, Chem. Rev., 113, 442 (2013); https://doi.org/10.1021/cr300271k. (d) U. Wille, Chem. Rev., 113, 813 (2013); https://doi.org/10.1021/cr100359d.
E. Godineau and Y. Landais, Chem. Eur. J., 15, 3044 (2009); https://doi.org/10.1002/chem.200802415.
H.C. Kolb, M.G. Finn and K.B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AIDANIE2004>3.0.CO;2-5.
E.M. Sletten and C.R. Bertozzi, Angew. Chem. Int. Ed., 48, 6974 (2009); https://doi.org/10.1002/anie.200900942.
(a) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi and A. Lei, Chem. Rev., 115, 12138 (2015); https://doi.org/10.1021/cr500431s. (b) L. Yang and H. Huang, Chem. Rev., 115, 3468 (2015); https://doi.org/10.1021/cr500610p. (c) X.-X. Guo, D.-W. Gu, Z. Wu and W. Zhang, Chem. Rev., 115, 1622 (2015); https://doi.org/10.1021/cr500410y. (d) Q.-Z. Zheng and N. Jiao, Chem. Soc. Rev., 45, 4590 (2016); https://doi.org/10.1039/C6CS00107F.
(a) Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai and J.-Q. Yu, Nature, 515, 389 (2014); https://doi.org/10.1038/nature13885. (b) J.-Q. Yu, Adv. Synth. Catal., 356, 1393 (2014); https://doi.org/10.1002/adsc.201400406. (c) K. Navid, Org. Synth., 92, 58 (2015); https://doi.org/10.15227/orgsyn.092.0058.
X. Shang and Z.-Q. Liu, Acta Chim. Sin., 73, 1275 (2015); https://doi.org/10.6023/A15060407.
J.F. Hartwig, J. Am. Chem. Soc., 138, 2 (2016); https://doi.org/10.1021/jacs.5b08707.
(a) W.-M. Zhao, X.-L. Chen, J.-W. Yuan, L.-B. Qu, L.-K. Duan and Y.-F. Zhao, Chem. Commun., 50, 2018 (2014); https://doi.org/10.1039/c3cc48069k. (b) R. Xia, M.-S. Xie, H.-Y. Niu, G.-R. Qu and H.-M. Guo, Org. Lett., 16, 444 (2014); https://doi.org/10.1021/ol4033336.
T. McCallum and L. Barriault, Chem. Sci., 7, 4754 (2016); https://doi.org/10.1039/C6SC00807K.
V. Liautard and Y., Landais, eds.: J. Zhu, Q. Wang and M.-X. Wang, Wiley-VCH: Weinheim, Chap. 14, p. 401(2014); https://doi.org/10.1002/9783527678174.ch14.
D.A. Dirocco, K. Dykstra, S. Krska, P. Vachal, D.V. Conway and M. Tudge, Angew. Chem. Int. Ed., 53, 4802 (2014); https://doi.org/10.1002/anie.201402023.
J.B. Xia, C. Zhu and C. Chen, Chem. Commun., 50, 1170 (2014); https://doi.org/10.1039/C4CC05650G.
S.D. Halperin, H. Fan, S. Chang, R.E. Martin and R.A. Britton, Angew. Chem. Int. Ed., 53, 4690 (2014); https://doi.org/10.1002/anie.201400420.
J.G. West, T.A. Bedell and E.J. Sorensen, Angew. Chem. Int. Ed., 55, 8923 (2016); https://doi.org/10.1002/anie.201603149.
J. Yang, J. Zhang, L. Qi, C. Hu and Y. Chen, Chem. Commun., 51, 5275 (2015); https://doi.org/10.1039/C4CC06344A.
M.J. Schnermann and L.E. Overman, Angew. Chem. Int. Ed., 51, 9576 (2012); https://doi.org/10.1002/anie.201204977.
J. Li, J. Zhang, H. Tan and D.Z. Wang, Org. Lett., 17, 2522 (2015); https://doi.org/10.1021/acs.orglett.5b01053.
(a) G. Jalce, X. Franck and B. Figadère, Tetrahedron Asymm., 20, 2537 (2009); https://doi.org/10.1016/j.tetasy.2009.10.034. (b) I. Vilotijevic and T.F. Jamison, Angew. Chem. Int. Ed., 48, 5250 (2009); https://doi.org/10.1002/anie.200900600. (c) J.P. Wolfe and M.B. Hay, Tetrahedron, 63, 261 (2007); https://doi.org/10.1016/j.tet.2006.08.105.
Z. Liu, L. Wang, D. Liu and Z. Wang, Synlett, 26, 2849 (2015); https://doi.org/10.1055/s-0035-1560661.
Q.Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L. Lu and W.J. Xiao, Angew. Chem. Ed., 54, 11196 (2015); https://doi.org/10.1002/anie.201504559.
F. Le Vaillant, M.D. Wodrich and J. Waser, Chem. Sci., 8, 1790 (2017); https://doi.org/10.1039/C6SC04907A.
J. Xie, J. Yu, M. Rudolph, F. Rominger and A.S.K. Hashmi, Angew. Chem. Int. Ed., 55, 9416 (2016); https://doi.org/10.1002/anie.201602347.
W. Li, Y. Duan, M. Zhang, J. Cheng and C. Zhu, Chem. Commun., 52, 7596 (2016); https://doi.org/10.1039/C6CC02027E.
W.-M. Zhang, J.-J. Dai, J. Xu and H.-J. Xu, J. Org. Chem., 82, 2059 (2017); https://doi.org/10.1021/acs.joc.6b02891.
L. Pitzer, F. Sandfort, F. Strieth-Kalthoff and F. Glorius, J. Am. Chem. Soc., 139, 13652 (2017); https://doi.org/10.1021/jacs.7b08086.
A.C. Sun, E.J. McClain, J.W. Beatty and C.R.J. Stephenson, Org. Lett., 20, 3487 (2018); https://doi.org/10.1021/acs.orglett.8b01250.
J. Li, Z. Wang, N. Wu, G. Gao and J. You, Chem. Commun., 50, 15049 (2014); https://doi.org/10.1039/C4CC07667B.
H. Zhang, C. Pan, N. Jin, Z. Gu, H. Hu and C. Zhu, Chem. Commun., 51, 1320 (2015); https://doi.org/10.1039/C4CC08629E.
C. Pan, H. Zhang and C. Zhu, Tetrahedron Lett., 57, 595 (2016); https://doi.org/10.1016/j.tetlet.2015.12.092.
J. Wang, X.-Q. Mou, B.-H. Zhang, W.-T. Liu, C. Yang, L. Xu, Z.-L. Xu and S.-H. Wang, Tetrahedron Lett., 57, 1239 (2016); https://doi.org/10.1016/j.tetlet.2016.02.013.
J.Y. Luo, H.L. Hua, Z.S. Chen, Z.Z. Zhou, Y.F. Yang, P.X. Zhou, Y.T. He, X.Y. Liu and Y.M. Liang, Chem. Commun., 50, 1564 (2014); https://doi.org/10.1039/c3cc48339h.
M. Ueda, Y. Ito, Y. Ichii, M. Kakiuchi, H. Shono and O. Miyata, Chem. Eur. J., 20, 6763 (2014); https://doi.org/10.1002/chem.201402217.
Z. Li, F. Fan, J. Yang and Z.-Q. Liu, Org. Lett., 16, 3396 (2014); https://doi.org/10.1021/ol501461u.
B. Wyler, F. Brucelle and P. Renaud, Org. Lett., 18, 1370 (2016); https://doi.org/10.1021/acs.orglett.6b00306.
W.-C. Yang, K. Wei, X. Sun, J. Zhu and L. Wu, Org. Lett., 20, 3144 (2018); https://doi.org/10.1021/acs.orglett.8b01278.
H. Yi, X. Zhang, C. Qin, Z. Liao, J. Liu and A. Lei, Adv. Synth. Catal., 356, 2873 (2014); https://doi.org/10.1002/adsc.201400548.
Z. Liao, H. Yi, Z. Li, C. Fan, X. Zhang, J. Liu, Z. Deng and A. Lei, Chem. Asian J., 10, 96 (2015); https://doi.org/10.1002/asia.201403097.
C. Chatalova-Sazepin, Q. Wang, G.M. Sammis and J. Zhu, Angew. Chem. Int., 54, 5443 (2015); https://doi.org/10.1002/anie.201412357.
H. Hassan, V. Pirenne, M. Wissing, C. Khiar, A. Hussain, F. Robert and Y. Landais, Chem. Eur. J., 23, 4651 (2017); https://doi.org/10.1002/chem.201605946.
R. Beniazza, V. Liautard, C. Poittevin, B. Ovadia, S. Mohammed, F. Robert and Y. Landais, Chem. Eur. J., 23, 2439 (2017); https://doi.org/10.1002/chem.201605043.
Z. Liu and Z.-Q. Liu, Org. Lett., 19, 5649 (2017); https://doi.org/10.1021/acs.orglett.7b02788.
R. Pan, L. Hu, C. Han, A. Lin and H. Yao, Org. Lett., 20, 1974 (2018); https://doi.org/10.1021/acs.orglett.8b00518.
F. Fontana, F. Minisci, M.C. Nogueira Barbosa and E. Vismara, J. Org. Chem., 56, 2866 (1991); https://doi.org/10.1021/jo00008a050.
Y. Siddaraju, M. Lamani and K.R. Prabhu, J. Org. Chem., 79, 3856 (2014); https://doi.org/10.1021/jo500294z.
J. Jin and D. MacMillan, Angew. Chem. Int. Ed. Engl., 54, 1565 (2015); https://doi.org/10.1002/anie.201410432.
L. Zhang and Z.-Q. Liu, Org. Lett., 19, 6594 (2017); https://doi.org/10.1021/acs.orglett.7b03297.
S. Bordi and J.T. Starr, Org. Lett., 19, 2290 (2017); https://doi.org/10.1021/acs.orglett.7b00833.
T.C. Sherwood, N. Li, A.N. Yazdani and T.G.M. Dhar, J. Org. Chem., 83, 3000 (2018); https://doi.org/10.1021/acs.joc.8b00205.
X. Sun, X. Li, S. Song, Y. Zhu, Y. Liang and N. Jiao, J. Am. Chem. Soc., 137, 6059 (2015); https://doi.org/10.1021/jacs.5b02347.
X.W. Lan, N.X. Wang, W. Zhang, J.L. Wen, C.B. Bai, Y. Xing and Y.H. Li, Org. Lett., 17, 4460 (2015); https://doi.org/10.1021/acs.orglett.5b02116.
L. Zhou, H. Yi, L. Zhu, X. Qi, H. Jiang, C. Liu, Y. Feng, Y. Lan and A. Lei, Sci. Rep., 5, 15934 (2015); https://doi.org/10.1038/srep15934.
P.K. Chikkade, Y. Kuninobu and M. Kanai, Chem. Sci., 6, 3195 (2015); https://doi.org/10.1039/C5SC00238A.
Y. Ma, D. Zhang, Z. Yan, M. Wang, C. Bian, X. Gao, E.E. Bunel and A. Lei, Org. Lett., 17, 2174 (2015); https://doi.org/10.1021/acs.orglett.5b00775.
K.R. Babu, N. Zhu and H. Bao, Org. Lett., 19, 46 (2017); https://doi.org/10.1021/acs.orglett.6b03287.
S. Tang, P. Wang, H. Li and A. Lei, Nat. Commun., 7, Article 11676 (2016); https://doi.org/10.1038/ncomms11676.
B. Liang, Q. Wang and Z.Q. Liu, Org. Lett., 19, 6463 (2017); https://doi.org/10.1021/acs.orglett.7b03313.
X.-B. Yan, Y.-W. Shen, D.-Q. Chen, P. Gao, Y.-X. Li, X.R. Song, X.-Y. Liu and Y.-M. Liang, Tetrahedron, 70, 7490 (2014); https://doi.org/10.1016/j.tet.2014.08.025.
G. Kumar and G. Sekar, RSC Adv., 5, 28292 (2015); https://doi.org/10.1039/C4RA15162C.
E. Kianmehr, S. Kazemi and A. Foroumadi, Tetrahedron, 70, 349 (2014); https://doi.org/10.1016/j.tet.2013.11.051.
Y. Zhao, B. Huang, C. Yang and W. Xia, Org. Lett., 18, 3326 (2016); https://doi.org/10.1021/acs.orglett.6b01371.
R. Jin and F.W. Patureau, Org. Lett., 18, 4491 (2016); https://doi.org/10.1021/acs.orglett.6b02223.
C. Che, Z. Qian, M. Wu, Y. Zhao and G. Zhu, J. Org. Chem., 83, 5665 (2018); https://doi.org/10.1021/acs.joc.8b00666.
R.J. Song, Y.Q. Tu, D.Y. Zhu, F.M. Zhang and S.H. Wang, Chem. Commun., 51, 749 (2015); https://doi.org/10.1039/C4CC08797F.
R. Sakamoto, T. Kato, S. Sakurai and K. Maruoka, Org. Lett., 20, 1400 (2018); https://doi.org/10.1021/acs.orglett.8b00173.
M. Banerjee, R. Mukhopadhyay, B. Achari and A.K. Banerjee, J. Org. Chem., 71, 2787 (2006); https://doi.org/10.1021/jo052589w.
J. Ni, Y. Xue, L. Sun and A. Zhang, J. Org. Chem., 83, 4598 (2018); https://doi.org/10.1021/acs.joc.8b00341.
P.S. Mahajan and S.B. Mhaske, Org. Lett., 20, 2092 (2018); https://doi.org/10.1021/acs.orglett.8b00652.