Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Column Pressure Control for Micro-Positive Pressure Distillation
Corresponding Author(s) : Peng Bai
Asian Journal of Chemistry,
Vol. 25 No. 15 (2013): Vol 25 Issue 15
Abstract
Micro-positive pressure distillation is commonly used in processes where the feed stock or products are oxygen sensitive. It is critical to keep column pressure stable for such process as pressure fluctuations may lead to dramatic changes in product quality. Pressure is typically controlled by manipulating condenser heat removal which is termed as temperature control. Stable column pressure can also be maintained by compensating pressure fluctuations in the distillation system. In this study, both temperature control and pressure compensation strategies are introduced including hot vapour bypass, floating-pressure control and inert current control system. Features and potential problems of different pressure control mechanisms are carefully analyzed. This paper provides a guideline for selecting proper control methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.W. Sloley, Chem. Eng. Prog., 1, 39 (2001).
- B. Liptak, Control, 20 56 (2007).
- S.F. Zhao, R.C. Gao and P. Bai, Appl. Mechan. Mater., 275-277, 659 (2013).
- P. Buckley, J. Shunta and W. Luyben, ISA, Research Triangle Park, NC, 576 (1985).
- W.L. Luyben, Ind. Eng. Chem. Res., 50, 965 (2011).
- A.W. Sloley, In Proceedings of AIChE National Meeting, Atlanta (Mar. 2000).
- Y.X. Zhang, Chem. Eng. Oil Gas, 33, 340 (2004).
- D.N. Zhang, Jiangsu Chem. Ind., 3, 44 (2002).
- J.B. Riggs, Chem. Eng. Proc., 94, 31 (Oct.1998).
- H.Q. Shi, Cont. Inst. Chem. Ind., 33, 26 (2006).
- W.D. Seider, J.D. Seader and D.R. Lewin, Product and Process Design Principles, Wiley: New York, edn. 2, p. 741 (2003).
- J.B. Riggs and M.N. Karim, Chemical and Bio-Process Control, Ferret Publishing: Austin, TX (2007).
- B.W. Bequette, Process Control: Modeling, Design and Simulation, Prentice-Hall: Upper Saddle River, N.J., p. 465 (2003).
- W.L. Luyben, Ind. Eng. Chem. Res., 44, 5715 (2005).
- D.B. Kaymak and W.L. Luyben, Chem. Eng. Sci., 61, 4432 (2006).
- W.L. Luyben, Ind. Eng. Chem. Res., 44, 7800 (2005).
- K.Yin, J.L. Jiang and P. Bai, Chem. Ind. Eng. Res., 29, 70 (2012).
References
A.W. Sloley, Chem. Eng. Prog., 1, 39 (2001).
B. Liptak, Control, 20 56 (2007).
S.F. Zhao, R.C. Gao and P. Bai, Appl. Mechan. Mater., 275-277, 659 (2013).
P. Buckley, J. Shunta and W. Luyben, ISA, Research Triangle Park, NC, 576 (1985).
W.L. Luyben, Ind. Eng. Chem. Res., 50, 965 (2011).
A.W. Sloley, In Proceedings of AIChE National Meeting, Atlanta (Mar. 2000).
Y.X. Zhang, Chem. Eng. Oil Gas, 33, 340 (2004).
D.N. Zhang, Jiangsu Chem. Ind., 3, 44 (2002).
J.B. Riggs, Chem. Eng. Proc., 94, 31 (Oct.1998).
H.Q. Shi, Cont. Inst. Chem. Ind., 33, 26 (2006).
W.D. Seider, J.D. Seader and D.R. Lewin, Product and Process Design Principles, Wiley: New York, edn. 2, p. 741 (2003).
J.B. Riggs and M.N. Karim, Chemical and Bio-Process Control, Ferret Publishing: Austin, TX (2007).
B.W. Bequette, Process Control: Modeling, Design and Simulation, Prentice-Hall: Upper Saddle River, N.J., p. 465 (2003).
W.L. Luyben, Ind. Eng. Chem. Res., 44, 5715 (2005).
D.B. Kaymak and W.L. Luyben, Chem. Eng. Sci., 61, 4432 (2006).
W.L. Luyben, Ind. Eng. Chem. Res., 44, 7800 (2005).
K.Yin, J.L. Jiang and P. Bai, Chem. Ind. Eng. Res., 29, 70 (2012).