Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and DFT-Based Quantitative Structure-Activity Relationships Study for Diphenyl Ethers Bactericide
Corresponding Author(s) : M.L. Ma
Asian Journal of Chemistry,
Vol. 25 No. 15 (2013): Vol 25 Issue 15
Abstract
Density functional theory (DFT) and linear regression analysis method are used to investigate the quantitative structure-activity relationship (QSAR) of diphenyl ethers bactericide. It is found that there are good linear relationships between the experimental biological activity data [-log(1/MIC)] and the calculated energy gap of highest occupied molecular orbital and lowest unoccupied frontier orbital (DEgap). The 2D-QSAR equations (R2 = 0.87942) was established used -log(1/MIC) and DEgap as factors. A validation set of 14 diphenyl ethers were selected and their activities were computed using the proposed QSAR model and three of them were synthesized and characterized. The correlation between the predicted and observed activities was excellent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.L. Ma, Y. Xing and Y.L. Wang, Chin. J. Org. Chem., 24, 927 (2004).
- S. Cheng, Y. Xing and Y.L. Wang, Chin. J. Org. Chem., 28, 498 (2008).
- Y. Zou, K.Q.Wu and Y.L. Wang, Chin. J. Org. Chem., 28, 111 (2008).
- Y.L. Wang, M.L. Ma and R. Fu, Chin. J. Org. Chem., 24, 734 (2004).
- M.L. Ma, Y. Xing and Y.L.Wang, J. Sichuan Univ. (Nat. Sci. Ed.), 01, 137 (2004).
- C. Hansch, Acc. Chem. Res., 2, 232 (1969).
- R. Hilal and A.K. Elroby, Mol. Simulation, 37, 62 (2011).
- C.G. Gu, X.H. Ju and X. Sun, Ecotoxicol. Environ. Safety, 73, 1470 (2010).
- J.M. Andrews, J. Antimicrobiol. Chemother., 48, 5 (2001).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Aham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision D.1, Gaussian, Inc., Pitttsburgh, PA, (2005).
- C.L. Waller and J.D. McKinney, Chem. Res. Toxicol., 8, 847 (1995).
- J.D. McKinney and L.G. Pedersen, J. Biochem., 240, 621 (1986).
- R.G. Parr and Z. Zhou, Acc. Chem. Res., 26, 256 (1993).
- R.G. Pearson, Acc. Chem. Res., 26, 250 (1993).
- N.P. Barua, I. Sarmah, R. Hussain and C. Deka, Chem. Biol. Drug Des., 79, 553 (2012).
References
M.L. Ma, Y. Xing and Y.L. Wang, Chin. J. Org. Chem., 24, 927 (2004).
S. Cheng, Y. Xing and Y.L. Wang, Chin. J. Org. Chem., 28, 498 (2008).
Y. Zou, K.Q.Wu and Y.L. Wang, Chin. J. Org. Chem., 28, 111 (2008).
Y.L. Wang, M.L. Ma and R. Fu, Chin. J. Org. Chem., 24, 734 (2004).
M.L. Ma, Y. Xing and Y.L.Wang, J. Sichuan Univ. (Nat. Sci. Ed.), 01, 137 (2004).
C. Hansch, Acc. Chem. Res., 2, 232 (1969).
R. Hilal and A.K. Elroby, Mol. Simulation, 37, 62 (2011).
C.G. Gu, X.H. Ju and X. Sun, Ecotoxicol. Environ. Safety, 73, 1470 (2010).
J.M. Andrews, J. Antimicrobiol. Chemother., 48, 5 (2001).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Aham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision D.1, Gaussian, Inc., Pitttsburgh, PA, (2005).
C.L. Waller and J.D. McKinney, Chem. Res. Toxicol., 8, 847 (1995).
J.D. McKinney and L.G. Pedersen, J. Biochem., 240, 621 (1986).
R.G. Parr and Z. Zhou, Acc. Chem. Res., 26, 256 (1993).
R.G. Pearson, Acc. Chem. Res., 26, 250 (1993).
N.P. Barua, I. Sarmah, R. Hussain and C. Deka, Chem. Biol. Drug Des., 79, 553 (2012).