Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Mercury on Activated Carbon in Simulated Flue Gas with Continuous Components Change
Corresponding Author(s) : Chang-Xing Hu
Asian Journal of Chemistry,
Vol. 25 No. 15 (2013): Vol 25 Issue 15
Abstract
This paper focused on the influence of flue gas component change on elemental mercury (Hg0) adsorption by powder activated carbon from apricot’s shell and discussed the Hg0 adsorption characteristics and mechanism of activated carbon. Experimental results showed that activated carbon from apricot’s shell had no Hg0 adsorption ability in the non-oxidizing atmosphere, such as N2, N2 + CO2 etc. Though the influence on homogeneous oxidation reaction of Hg0 was limited, NO2 was the key factor on heterogeneous catalytic oxidation reaction of Hg0 on the surface of activated carbon. It was easy to form NO2 by reaction between the NO and O2. It could also enhance the Hg0 adsorption ability of activated carbon through preloading NO2 on the surface. Based on these experimental results, it finely proved that Hg0 adsorption by activated carbon was a heterogeneous catalytic oxidation reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- EPRI,An Assessment of Mercury Emissions from US Coal-Fired Power Plants, EPRI (1000608), Palo Alto, CA (2000).
- J.S. Zhou, Z.Y. Luo,C.X. Hu and K.F. Cen, Energy Fuels, 21, 491 (2007).
- C.X. Hu, J.S. Zhou, Z.Y. Luo, S. He, G.K. Wang and K.F. Cen, J. Environ. Sci., 18, 1161 (2006).
- C.X. Hu, J.S. Zhou, S. He, Z.Y. Luo and K.F. Cen, Fuel Process. Technol., 90, 812 (2009).
- L.S. Xu, H.C. Zen and J. Guo, Thermal Power Gen., 35, 1 (2006).
- E.J. Granite, M.C. Freeman, W.J. O’Dowd, R.A. Hargis and H.W. Pennline, J. Environ. Manage., 84, 628 (2007).
- W.J. O’Dowd, H.W. Pennline, M.C. Freeman, E.J. Granite, R.A. Hargis, C.J. Lacher and A. Karash, Fuel Process. Technol., 87, 1071 (2006).
- A.A. Presto, E.J. Granite, A. Karash, R.A. Hargis, W.J. O’Dowd and H.W. Pennline, Energy Fuels, 20, 1941 (2006).
- A.A. Presto and E.J. Granite, Environ. Sci. Technol., 40, 5601 (2006).
- S.J. Miller, G.E. Dunham, E.S. Olson and T.D. Brown, Fuel Process. Technol., 65-66, 343 (2000).
- T.R. Carey, O.W. Hargrove, C.F. Richardson, R. Chang and F.B. Meserole, J. Air Waste Manage. Assoc., 48, 1166 (1998).
- C.X. Hu, J.S. Zhou, Z.Y. Luo and K.F. Cen, Energy Fuels, 25, 154 (2011).
- C.X. Hu, PhD Thesis, Mercury Emission from Coal-Fired Power Plant in China and Stability Adsorption Mechanism of Mercury on Activated Carbon, Zhejiang University, Hangzhou, China (2007).
- B. Hall, P. Schager and E. Lindqvist, Water Air Soil Pollut., 56, 3 (1991).
- B. Hall, E. Lindqvist and E. Ljungstrom, Environ. Sci. Technol., 24, 108 (1990).
- B. Hall, Water Air Soil Pollut., 80, 301 (1995).
- K.C. Galbreath and C.J. Zygarlicke, Fuel Process. Technol., 65-66, 289 (2000).
- H.L. Hitchcock, M.S. Thesis, Mercury Sorption on Metal Oxides, University of North Dakota (1996).
- D.V. Radisav, R.V. Joseph and U.B. Eric, Mercury Speciation in CoalFired Power Plant Flue Gas-Experimental Studies and Model Development Final Technical Report (August 1, 2005-July 31, 2008). Cooperative Agreement Number: DE-FG26-05NT42534 (2009).
- G.A. Norton, H.Q. Yang, R.C. Brown, D.L. Laudal, G.E. Dunham and J. Erjavec, Fuel, 82, 107 (2003).
- C.X. Hu, J.S. Zhou, J.X. Li, Y.C. Wang, J. Zheng, M.J. Xu and Z.Y. Luo, CIESC Journal, 63, 1536 (2012).
References
EPRI,An Assessment of Mercury Emissions from US Coal-Fired Power Plants, EPRI (1000608), Palo Alto, CA (2000).
J.S. Zhou, Z.Y. Luo,C.X. Hu and K.F. Cen, Energy Fuels, 21, 491 (2007).
C.X. Hu, J.S. Zhou, Z.Y. Luo, S. He, G.K. Wang and K.F. Cen, J. Environ. Sci., 18, 1161 (2006).
C.X. Hu, J.S. Zhou, S. He, Z.Y. Luo and K.F. Cen, Fuel Process. Technol., 90, 812 (2009).
L.S. Xu, H.C. Zen and J. Guo, Thermal Power Gen., 35, 1 (2006).
E.J. Granite, M.C. Freeman, W.J. O’Dowd, R.A. Hargis and H.W. Pennline, J. Environ. Manage., 84, 628 (2007).
W.J. O’Dowd, H.W. Pennline, M.C. Freeman, E.J. Granite, R.A. Hargis, C.J. Lacher and A. Karash, Fuel Process. Technol., 87, 1071 (2006).
A.A. Presto, E.J. Granite, A. Karash, R.A. Hargis, W.J. O’Dowd and H.W. Pennline, Energy Fuels, 20, 1941 (2006).
A.A. Presto and E.J. Granite, Environ. Sci. Technol., 40, 5601 (2006).
S.J. Miller, G.E. Dunham, E.S. Olson and T.D. Brown, Fuel Process. Technol., 65-66, 343 (2000).
T.R. Carey, O.W. Hargrove, C.F. Richardson, R. Chang and F.B. Meserole, J. Air Waste Manage. Assoc., 48, 1166 (1998).
C.X. Hu, J.S. Zhou, Z.Y. Luo and K.F. Cen, Energy Fuels, 25, 154 (2011).
C.X. Hu, PhD Thesis, Mercury Emission from Coal-Fired Power Plant in China and Stability Adsorption Mechanism of Mercury on Activated Carbon, Zhejiang University, Hangzhou, China (2007).
B. Hall, P. Schager and E. Lindqvist, Water Air Soil Pollut., 56, 3 (1991).
B. Hall, E. Lindqvist and E. Ljungstrom, Environ. Sci. Technol., 24, 108 (1990).
B. Hall, Water Air Soil Pollut., 80, 301 (1995).
K.C. Galbreath and C.J. Zygarlicke, Fuel Process. Technol., 65-66, 289 (2000).
H.L. Hitchcock, M.S. Thesis, Mercury Sorption on Metal Oxides, University of North Dakota (1996).
D.V. Radisav, R.V. Joseph and U.B. Eric, Mercury Speciation in CoalFired Power Plant Flue Gas-Experimental Studies and Model Development Final Technical Report (August 1, 2005-July 31, 2008). Cooperative Agreement Number: DE-FG26-05NT42534 (2009).
G.A. Norton, H.Q. Yang, R.C. Brown, D.L. Laudal, G.E. Dunham and J. Erjavec, Fuel, 82, 107 (2003).
C.X. Hu, J.S. Zhou, J.X. Li, Y.C. Wang, J. Zheng, M.J. Xu and Z.Y. Luo, CIESC Journal, 63, 1536 (2012).