Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
TG-FTIR Study of Degradation Mechanism and Pyrolysis Products of High Molecular Polyacrylonitrile with Different Oxidation Degree
Corresponding Author(s) : Riguang Jin
Asian Journal of Chemistry,
Vol. 25 No. 15 (2013): Vol 25 Issue 15
Abstract
Thermal degradation of both high molecular polyacrylonitrile precursor fiber and pre-oxidation fibers with different extent of stabilization were studied in N2 atmospheres using thermogravimetric analysis coupled with Fourier transform Infrared analysis (TG-FTIR). Degradation mechanism and volatile products at various temperatures of each sample were studied. The results show that the fibers with higher stabilization were more stable. It is indicated that degradation process of fibers can be divided into three stages and most of the weight loss occurs at the second stage. The gaseous products such as H2O, NH3, HCN, CO and CO2 are formed, meanwhile, the amount of volatile products of fibers were closely related to stabilization of fibers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.D. Edie, Carbon, 36, 345 (1998).
- A. Shindo, Carbon, 2, 391 (1964).
- H. Ogawa, Carbon, 38, 211 (2000).
- A.K. Gupta, D.K. Paliwal and P. Bajaj, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C31, 48 (1991).
- J.P. Riggs, Encyclopedia of Polymer Science and Engineering, Wiley, New York (1989).
- K. Sudo and K. Shimizu, J. Appl. Polym. Sci., 44, 127 (1992).
- D. Zhang and Q. Sun, J. Appl. Polym. Sci., 62, 367 (1996).
- J.A. Newell, D.D. Edie and L.E. Fuller, J. Appl. Polym. Sci., 60, 825 (1996).
- P. Morgan, Carbon Fibers and Their Composites. Taylor & Francis, New York (2005).
- M.S.A. Rahaman, A.F. Ismail and A. Mustafa, Polym. Degrad. Stab., 92, 1421 (2007).
- S.B. Stanislav, V.A. Igor and V.M. Irina, Thermochim. Acta, 507, 9 (2010).
- P.J. Snchez-Soto, M.A. Avils, J.C. del Ro, J.M. Gins, J. Pascual and J.L. Prez Rodrguez, J. Anal. Appl. Pyrol., 58-59, 155 (2001).
- N. Grassie and J.N. Hay, J. Polym. Sci., 58, 189 (1962).
- K. Miyamiti, M. Okamoto, O. Ishizuka, M. Katayama and S.-I. GakkaiShi, J. Appl. Phys., 22, 538 (1966).
- A.M. Sarmadi, C.J. Noel and J.B. Birch, Ind. Eng. Chem. Res., 29, 1640 (1990).
- D.M. Riggs, R.J. Shuford and R.W. Lewis, Hand Book of Composites; Van Nostrand Reinhold, New York, Ch. 11, pp. 196-271 (1982).
- M.J. Bortner, Ph.D. Dissertation, Virginia Polytechnic Institute and State University (2003).
- R.C. Houtz, Textile Res. J., 20, 789 (1950).
- W.J. Burlant and J.L. Parsons, J. Polym. Sci., 22, 249 (1956).
- E.M. Lacombe, J. Polym. Sci., 24, 152 (1957).
- N. Grassie, J.N. Hay and C. Mcneilli, J. Polym. Sci., 31, 205 (1958).
- N. Grassie and J. Hay, J. Polym. Sci., 56, 189 (1962).
- A.E. Standage and R. Prescott, Nature, 211, 688 (1969).
- H.N. Friedlander, L.H. Peebles, J. Brandrup and J.R. Kirby, Macromolecules, 1, 79 (1968).
- W. Watt and W. Johnson, Nature, 257, 210 (1975).
- K. Morita, Y. Murata, A. Ishitani, K. Murayama, T. Ono and A. Nakajima, Pure Appl. Chem., 58,45 (1986).
- W.X. Zhang, J. Liu and G. Wu, Carbon, 41, 2805 (2003).
- P. Bajaj, T.V. Sreekumar and K. Sen, J. Appl. Polym. Sci., 79, 1640 (2001).
- Q.Y. Qin, C. Lu, H.J. Wang and K.X. Li, Polym. Degrad. Stab., 93, 1415 (2008).
- X. Tao and X.M. Huang, Fuel, 89, 2185 (2010).
- P.R. Solomon, T.H. Fletcher and R.J. Pugmire, Fuel, 72, 587 (1993).
- J.B. Yang and N.S. Cai, J. Fuel Chem. Technol., 34, 650 (2006)
References
D.D. Edie, Carbon, 36, 345 (1998).
A. Shindo, Carbon, 2, 391 (1964).
H. Ogawa, Carbon, 38, 211 (2000).
A.K. Gupta, D.K. Paliwal and P. Bajaj, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C31, 48 (1991).
J.P. Riggs, Encyclopedia of Polymer Science and Engineering, Wiley, New York (1989).
K. Sudo and K. Shimizu, J. Appl. Polym. Sci., 44, 127 (1992).
D. Zhang and Q. Sun, J. Appl. Polym. Sci., 62, 367 (1996).
J.A. Newell, D.D. Edie and L.E. Fuller, J. Appl. Polym. Sci., 60, 825 (1996).
P. Morgan, Carbon Fibers and Their Composites. Taylor & Francis, New York (2005).
M.S.A. Rahaman, A.F. Ismail and A. Mustafa, Polym. Degrad. Stab., 92, 1421 (2007).
S.B. Stanislav, V.A. Igor and V.M. Irina, Thermochim. Acta, 507, 9 (2010).
P.J. Snchez-Soto, M.A. Avils, J.C. del Ro, J.M. Gins, J. Pascual and J.L. Prez Rodrguez, J. Anal. Appl. Pyrol., 58-59, 155 (2001).
N. Grassie and J.N. Hay, J. Polym. Sci., 58, 189 (1962).
K. Miyamiti, M. Okamoto, O. Ishizuka, M. Katayama and S.-I. GakkaiShi, J. Appl. Phys., 22, 538 (1966).
A.M. Sarmadi, C.J. Noel and J.B. Birch, Ind. Eng. Chem. Res., 29, 1640 (1990).
D.M. Riggs, R.J. Shuford and R.W. Lewis, Hand Book of Composites; Van Nostrand Reinhold, New York, Ch. 11, pp. 196-271 (1982).
M.J. Bortner, Ph.D. Dissertation, Virginia Polytechnic Institute and State University (2003).
R.C. Houtz, Textile Res. J., 20, 789 (1950).
W.J. Burlant and J.L. Parsons, J. Polym. Sci., 22, 249 (1956).
E.M. Lacombe, J. Polym. Sci., 24, 152 (1957).
N. Grassie, J.N. Hay and C. Mcneilli, J. Polym. Sci., 31, 205 (1958).
N. Grassie and J. Hay, J. Polym. Sci., 56, 189 (1962).
A.E. Standage and R. Prescott, Nature, 211, 688 (1969).
H.N. Friedlander, L.H. Peebles, J. Brandrup and J.R. Kirby, Macromolecules, 1, 79 (1968).
W. Watt and W. Johnson, Nature, 257, 210 (1975).
K. Morita, Y. Murata, A. Ishitani, K. Murayama, T. Ono and A. Nakajima, Pure Appl. Chem., 58,45 (1986).
W.X. Zhang, J. Liu and G. Wu, Carbon, 41, 2805 (2003).
P. Bajaj, T.V. Sreekumar and K. Sen, J. Appl. Polym. Sci., 79, 1640 (2001).
Q.Y. Qin, C. Lu, H.J. Wang and K.X. Li, Polym. Degrad. Stab., 93, 1415 (2008).
X. Tao and X.M. Huang, Fuel, 89, 2185 (2010).
P.R. Solomon, T.H. Fletcher and R.J. Pugmire, Fuel, 72, 587 (1993).
J.B. Yang and N.S. Cai, J. Fuel Chem. Technol., 34, 650 (2006)