Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Metal Oxide based Chalcogenides Heterostructure Thin Film Photoanodes for Photoelectrochemical Solar Hydrogen Generation
Corresponding Author(s) : S.M. Ho
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Thin films have been used for many applications. Hydrogen production from solar water splitting has been considered as a key solution to the energy and environmental issues. The tuned band gap alignments in metal chalcogenides/metal oxides heterostructure enable efficient separation of photogenerated electrons and holes, leading to the effective hydrogen production. We sensitize these structures by hydrothermal methods and evaluate the performance toward hydrogen generation. This work shows a brief overview of photoelectrochemical hydrogen production, progress and ongoing sprints. Here, different metal chalcogenides were deposited on metal oxides (TiO2 and Fe2O3) in order to improve the photoelectrochemical performance by reducing recombination of photogenerated electron–hole pairs and facilitate hole transport at the metal chalcogenides/metal oxides/electrolyte interface. The study includes chalcogenides/metal oxides heterostructure designs and electrochemistry and solar hydrogen generation are brought together, illustrating the promise and challenge of photoelectrochemistry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Ho, Asian J. Chem., 27, 3851 (2015); https://doi.org/10.14233/ajchem.2015.19013.
- K. Anuar, S.M. Ho and W.T. Tan, Eur. J. Appl. Sci., 3, 75 (2011).
- H. Chen, S. Fu, S. Wu, H. Wu and C. Shih, Mater. Lett., 169, 126 (2016); https://doi.org/10.1016/j.matlet.2016.01.030.
- T. Daniel, J. Henry, K. Mohanraj and G. Sivakumar, Mater. Res. Express, 3, 116401 (2016); https://doi.org/10.1088/2053-1591/3/11/116401.
- K. Noraini, K. Anuar, S.M. Ho and H.A. Abdul, Dig. J. Nanomater. Biostruct., 5, 975 (2010).
- K. Benyahia, A. Benhaya and M.S. Aida, J. Semicond., 36, 103001 (2015); https://doi.org/10.1088/1674-4926/36/10/103001.
- N. Memarian, S.M. Rozati, I. Concina and A. Vomiero, Materials, 10, 773 (2017); https://doi.org/10.3390/ma10070773.
- B.M.S. Sahuban, R. Chandramohan, T.A. Vijayan, K.S. Saravana, K.S.R. Sri, M. Jayachandran and A. yeshamariam, J. Mater. Sci. Eng., 5, 297 (2016); https://doi.org/10.4172/2169-0022.1000297.
- J.M. Kephart, R.M. Geisthardt and W.S. Sampath, Prog. Photovoltaic, 23, 1484 (2015); https://doi.org/10.1002/pip.2578.
- T. Dhandayuthapani, M. Girish, R. Sivakumar, C. Sanjeeviraja and R. Gopalakrishnan, Appl. Surf. Sci., 353, 449 (2015); https://doi.org/10.1016/j.apsusc.2015.06.154.
- E. Yücel and S. Kahraman, Ceram. Int., 41, 4726 (2015); https://doi.org/10.1016/j.ceramint.2014.12.021.
- M.V. Morales-Gallardo, A.M. Ayala, M. Pal, M.A. Cortes Jacome, J.A. Toledo Antonio and N.R. Mathews, Chem. Phys. Lett., 660, 93 (2016); https://doi.org/10.1016/j.cplett.2016.07.046.
- A. Kassim, S.M. Ho, W.T. Tan, S. Atan, K. Zulkefly and N. Saravanan, Chiang Mai Univ. J. Nat. Sci., 7, 318 (2008).
- S. Monohorn, S.M. Ho, K. Anuar, S. Nagalingam and W.T. Tan, J. Sci. Eng. Technol., 6, 126 (2010).
- M. Stanczak, A Brief History of Copper, Cambridge Scientific Abstracts: Bethesda, MD (2005).
- D. Klemm, R. Klemm and A. Murr, J. Afr. Earth Sci., 33, 643 (2001); https://doi.org/10.1016/S0899-5362(01)00094-X.
- T. James, Gold Bull., 5, 38 (1972); https://doi.org/10.1007/BF03215160.
- C. Renfrew, Antiquity, 52, 199 (1978); https://doi.org/10.1017/S0003598X00072197.
- C. Renfrew, Antiquity, 45, 275 (1971); https://doi.org/10.1017/S0003598X00069799.
- M.J. Sparnay, Adventures in Vacuum, North Holland Publishing: Eindhoven, The Netherlands (1992).
- T.S. Baynes, The Encyclopaedia Britannica: A Dictionary of Arts, Sciences, Literature and General Information, Encyclopaedia Britannica: New York, vol. 19, p. 246 (1888).
- T.E. Conlon, Thinking about Nothing: Otto von Guericke and the Magdeburg Experiments on the Vacuum, The Saint Austin Press: London (2011).
- M. Ohring, Material Science of Thin films, Academic Press, edn 2 (2002).
- S.S. Tulenin, A.V. Pozdin, K.A. Karpov, D.A. Novotorkina and M.S. Rogovoy, Asian J. Chem., 30, 1655 (2018); https://doi.org/10.14233/ajchem.2018.21307.
- J. Zhu, X. Zhang, Y. Zhu and S.B. Desu, J. Appl. Phys., 83, 1610 (1998); https://doi.org/10.1063/1.366872.
- Y. Choi and S. Suresh, Acta Mater., 50, 1881 (2002); https://doi.org/10.1016/S1359-6454(02)00046-0.
- H.D. Espinosa and B.C. Prorok, J. Mater. Chem., 38, 4125 (2003); https://doi.org/10.1023/A:1026321404286.
- E.I. Rogacheva, O.N. Nashchekina and S.I. Menshikova, J. Electr. Mater., 46, 3842 (2017); https://doi.org/10.1007/s11664-017-5481-1.
- M. Tallarida, C. Das and D. Schmeisser, Beilstein J. Nanotechnol., 5, 77 (2014); https://doi.org/10.3762/bjnano.5.7.
- J.H. Park, J. Ahn, K.J. Yoon, H. Kim, H.-I. Ji, J.-H. Lee, S.M. Han and J.-W. Son, J. Electrochem. Soc., 165, F671 (2018); https://doi.org/10.1149/2.0961809jes.
- A.Z. Simoes, C.S. Riccardi, L.S. Cavalcante, A.H.M. Gonzalez, E. Longo and J.A. Varela, Mater. Res. Bull., 43, 158 (2008); https://doi.org/10.1016/j.materresbull.2007.02.011.
- J. Kim, S. Qin, W. Yao, Q. Niu, M.Y. Chou and C.-K. Shih, PNAS, 107, 12761 (2010); https://doi.org/10.1073/pnas.0915171107.
- J.H. Mohd, K. Anuar, S.M. Ho, W.T. Tan, Y.R. Mohd, H.A. Abdul and N. Saravanan, Kuwait J. Sci. Eng., 37, 63 (2010).
- R. Sennett and G.D. Scott, J. Opt. Soc. Am., 40, 203 (1950); https://doi.org/10.1364/JOSA.40.000203.
- W.E.J. Neal and R.W. Fane, J. Phys. E Sci. Instrum., 6, 409 (1973); https://doi.org/10.1088/0022-3735/6/5/001.
- O.S. Heavens, Rep. Prog. Phys., 23, 301 (1960); https://doi.org/10.1088/0034-4885/23/1/301.
- D.A. Hardwick, Thin Solid Films, 154, 109 (1987); https://doi.org/10.1016/0040-6090(87)90357-9.
- T.P. Weihs, S. Hong, J.C. Bravman and W.D. Nix, J. Mater. Res., 3, 931 (1988); https://doi.org/10.1557/JMR.1988.0931.
- S.P. Baker and W.D. Nix, J. Mater. Res., 9, 3131 (1994); https://doi.org/10.1557/JMR.1994.3131.
- www.ornl.gov.
- J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda and C.D. Evans, Solid State Ion., 135, 33 (2000); https://doi.org/10.1016/S0167-2738(00)00327-1.
- N.J. Dudney, Mater. Sci. Eng. B, 116, 245 (2005); https://doi.org/10.1016/j.mseb.2004.05.045.
- G.J. Snyder and E.S. Toberer, Nat. Mater., 7, 105 (2008); https://doi.org/10.1038/nmat2090.
- P. Gokhale, B. Loganathan, J. Crowe, A. Date and A. Date, Energy Procedia, 110, 281 (2017); https://doi.org/10.1016/j.egypro.2017.03.140.
- J.A. Turner, Science, 285, 687 (1999); https://doi.org/10.1126/science.285.5428.687.
- H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 125, 3082 (2003); https://doi.org/10.1021/ja027751g.
- X. Chen, S. Shen, L. Guo and S.S. Mao, Chem. Rev., 110, 6503 (2010); https://doi.org/10.1021/cr1001645.
- G. Ai, H. Li, S. Liu, R. Mo and J. Zhong, Adv. Funct. Mater., 25, 5706 (2015); https://doi.org/10.1002/adfm.201502461.
- H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi and C. Li, J. Catal., 266, 165 (2009); https://doi.org/10.1016/j.jcat.2009.06.024.
- F. Cao, W. Shi, L. Zhao, S. Song, J. Yang, Y. Lei and H. Zhang, J. Phys. Chem. C, 112, 17095 (2008); https://doi.org/10.1021/jp8047345.
- X. Wang, G. Liu, L. Wang, Z.G. Chen, Q. Lu and H.M. Cheng, Adv. Energy Mater., 2, 42 (2012); https://doi.org/10.1002/aenm.201100528.
- J. Lee, T.G. Kim, H. Choi and Y. Sung, Cryst. Growth Des., 7, 2588 (2007); https://doi.org/10.1021/cg070588m.
- G. Ai, R. Mo, H. Xu, Q. Chen, S. Yang, H. Li and J. Zhong, J. Power Sources, 280, 5 (2015); https://doi.org/10.1016/j.jpowsour.2015.01.071.
- K. Cheng, X. Han, J. Meng, S. Wang and Z. Du, RSC Adv., 5, 11084 (2015); https://doi.org/10.1039/C4RA15204B.
- M.A. Mahadik, P.S. Shinde, M. Cho and J.S. Jang, J. Mater. Chem. A Mater. Energy Sustain., 3, 23597 (2015); https://doi.org/10.1039/C5TA07454A.
- B. Liu and E.S. Aydil, J. Am. Chem. Soc., 131, 3985 (2009); https://doi.org/10.1021/ja8078972.
- A. Annamalai, A. Subramanian, U. Kang, H. Park, S.H. Choi and J.S. Jang, J. Phys. Chem. C, 119, 3810 (2015); https://doi.org/10.1021/jp512189c.
- M.A. Mahadik, P.S. Shinde, M. Cho and J.S. Jang, Appl. Catal. B, 184, 337 (2016); https://doi.org/10.1016/j.apcatb.2015.12.001.
- W. Kim, T. Tachikawa, D. Monllor-Satoca, H. Kim, T. Majima and W. Choi, Energy Environ. Sci., 6, 3732 (2013); https://doi.org/10.1039/c3ee42151a.
- E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz and J.R. Durrant, J. Am. Chem. Soc., 125, 475 (2003); https://doi.org/10.1021/ja027945w.
- X. Gao, D. Guan, J. Huo, J. Chen and C. Yuan, Nanoscale, 5, 10438 (2013); https://doi.org/10.1039/c3nr03198e.
- M.A. Mahadik, A. Subramanian, J. Ryu, M. Cho and J.S. Jang, Dalton Trans., 46, 2377 (2017); https://doi.org/10.1039/C6DT04472G.
- M. Yin, C.-K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu and S. O’Brien, J. Am. Chem. Soc., 127, 9506 (2005); https://doi.org/10.1021/ja050006u.
- A. Hameed, T. Montini, V. Gombac and P. Fornasiero, J. Am. Chem. Soc., 130, 9658 (2008); https://doi.org/10.1021/ja803603y.
- M.A. Mahadik, A. Subramanian, H.S. Chung, M. Cho and J.S. Jang, ChemSusChem, 10, 2030 (2017); https://doi.org/10.1002/cssc.201700140.
- P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao and D. Wu, CrystEngComm, 15, 7548 (2013); https://doi.org/10.1039/c3ce40863a.
- H. Park, W. Choi and M.R. Hoffmann, J. Mater. Chem., 18, 2379 (2008); https://doi.org/10.1039/b718759a.
References
S.M. Ho, Asian J. Chem., 27, 3851 (2015); https://doi.org/10.14233/ajchem.2015.19013.
K. Anuar, S.M. Ho and W.T. Tan, Eur. J. Appl. Sci., 3, 75 (2011).
H. Chen, S. Fu, S. Wu, H. Wu and C. Shih, Mater. Lett., 169, 126 (2016); https://doi.org/10.1016/j.matlet.2016.01.030.
T. Daniel, J. Henry, K. Mohanraj and G. Sivakumar, Mater. Res. Express, 3, 116401 (2016); https://doi.org/10.1088/2053-1591/3/11/116401.
K. Noraini, K. Anuar, S.M. Ho and H.A. Abdul, Dig. J. Nanomater. Biostruct., 5, 975 (2010).
K. Benyahia, A. Benhaya and M.S. Aida, J. Semicond., 36, 103001 (2015); https://doi.org/10.1088/1674-4926/36/10/103001.
N. Memarian, S.M. Rozati, I. Concina and A. Vomiero, Materials, 10, 773 (2017); https://doi.org/10.3390/ma10070773.
B.M.S. Sahuban, R. Chandramohan, T.A. Vijayan, K.S. Saravana, K.S.R. Sri, M. Jayachandran and A. yeshamariam, J. Mater. Sci. Eng., 5, 297 (2016); https://doi.org/10.4172/2169-0022.1000297.
J.M. Kephart, R.M. Geisthardt and W.S. Sampath, Prog. Photovoltaic, 23, 1484 (2015); https://doi.org/10.1002/pip.2578.
T. Dhandayuthapani, M. Girish, R. Sivakumar, C. Sanjeeviraja and R. Gopalakrishnan, Appl. Surf. Sci., 353, 449 (2015); https://doi.org/10.1016/j.apsusc.2015.06.154.
E. Yücel and S. Kahraman, Ceram. Int., 41, 4726 (2015); https://doi.org/10.1016/j.ceramint.2014.12.021.
M.V. Morales-Gallardo, A.M. Ayala, M. Pal, M.A. Cortes Jacome, J.A. Toledo Antonio and N.R. Mathews, Chem. Phys. Lett., 660, 93 (2016); https://doi.org/10.1016/j.cplett.2016.07.046.
A. Kassim, S.M. Ho, W.T. Tan, S. Atan, K. Zulkefly and N. Saravanan, Chiang Mai Univ. J. Nat. Sci., 7, 318 (2008).
S. Monohorn, S.M. Ho, K. Anuar, S. Nagalingam and W.T. Tan, J. Sci. Eng. Technol., 6, 126 (2010).
M. Stanczak, A Brief History of Copper, Cambridge Scientific Abstracts: Bethesda, MD (2005).
D. Klemm, R. Klemm and A. Murr, J. Afr. Earth Sci., 33, 643 (2001); https://doi.org/10.1016/S0899-5362(01)00094-X.
T. James, Gold Bull., 5, 38 (1972); https://doi.org/10.1007/BF03215160.
C. Renfrew, Antiquity, 52, 199 (1978); https://doi.org/10.1017/S0003598X00072197.
C. Renfrew, Antiquity, 45, 275 (1971); https://doi.org/10.1017/S0003598X00069799.
M.J. Sparnay, Adventures in Vacuum, North Holland Publishing: Eindhoven, The Netherlands (1992).
T.S. Baynes, The Encyclopaedia Britannica: A Dictionary of Arts, Sciences, Literature and General Information, Encyclopaedia Britannica: New York, vol. 19, p. 246 (1888).
T.E. Conlon, Thinking about Nothing: Otto von Guericke and the Magdeburg Experiments on the Vacuum, The Saint Austin Press: London (2011).
M. Ohring, Material Science of Thin films, Academic Press, edn 2 (2002).
S.S. Tulenin, A.V. Pozdin, K.A. Karpov, D.A. Novotorkina and M.S. Rogovoy, Asian J. Chem., 30, 1655 (2018); https://doi.org/10.14233/ajchem.2018.21307.
J. Zhu, X. Zhang, Y. Zhu and S.B. Desu, J. Appl. Phys., 83, 1610 (1998); https://doi.org/10.1063/1.366872.
Y. Choi and S. Suresh, Acta Mater., 50, 1881 (2002); https://doi.org/10.1016/S1359-6454(02)00046-0.
H.D. Espinosa and B.C. Prorok, J. Mater. Chem., 38, 4125 (2003); https://doi.org/10.1023/A:1026321404286.
E.I. Rogacheva, O.N. Nashchekina and S.I. Menshikova, J. Electr. Mater., 46, 3842 (2017); https://doi.org/10.1007/s11664-017-5481-1.
M. Tallarida, C. Das and D. Schmeisser, Beilstein J. Nanotechnol., 5, 77 (2014); https://doi.org/10.3762/bjnano.5.7.
J.H. Park, J. Ahn, K.J. Yoon, H. Kim, H.-I. Ji, J.-H. Lee, S.M. Han and J.-W. Son, J. Electrochem. Soc., 165, F671 (2018); https://doi.org/10.1149/2.0961809jes.
A.Z. Simoes, C.S. Riccardi, L.S. Cavalcante, A.H.M. Gonzalez, E. Longo and J.A. Varela, Mater. Res. Bull., 43, 158 (2008); https://doi.org/10.1016/j.materresbull.2007.02.011.
J. Kim, S. Qin, W. Yao, Q. Niu, M.Y. Chou and C.-K. Shih, PNAS, 107, 12761 (2010); https://doi.org/10.1073/pnas.0915171107.
J.H. Mohd, K. Anuar, S.M. Ho, W.T. Tan, Y.R. Mohd, H.A. Abdul and N. Saravanan, Kuwait J. Sci. Eng., 37, 63 (2010).
R. Sennett and G.D. Scott, J. Opt. Soc. Am., 40, 203 (1950); https://doi.org/10.1364/JOSA.40.000203.
W.E.J. Neal and R.W. Fane, J. Phys. E Sci. Instrum., 6, 409 (1973); https://doi.org/10.1088/0022-3735/6/5/001.
O.S. Heavens, Rep. Prog. Phys., 23, 301 (1960); https://doi.org/10.1088/0034-4885/23/1/301.
D.A. Hardwick, Thin Solid Films, 154, 109 (1987); https://doi.org/10.1016/0040-6090(87)90357-9.
T.P. Weihs, S. Hong, J.C. Bravman and W.D. Nix, J. Mater. Res., 3, 931 (1988); https://doi.org/10.1557/JMR.1988.0931.
S.P. Baker and W.D. Nix, J. Mater. Res., 9, 3131 (1994); https://doi.org/10.1557/JMR.1994.3131.
www.ornl.gov.
J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda and C.D. Evans, Solid State Ion., 135, 33 (2000); https://doi.org/10.1016/S0167-2738(00)00327-1.
N.J. Dudney, Mater. Sci. Eng. B, 116, 245 (2005); https://doi.org/10.1016/j.mseb.2004.05.045.
G.J. Snyder and E.S. Toberer, Nat. Mater., 7, 105 (2008); https://doi.org/10.1038/nmat2090.
P. Gokhale, B. Loganathan, J. Crowe, A. Date and A. Date, Energy Procedia, 110, 281 (2017); https://doi.org/10.1016/j.egypro.2017.03.140.
J.A. Turner, Science, 285, 687 (1999); https://doi.org/10.1126/science.285.5428.687.
H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 125, 3082 (2003); https://doi.org/10.1021/ja027751g.
X. Chen, S. Shen, L. Guo and S.S. Mao, Chem. Rev., 110, 6503 (2010); https://doi.org/10.1021/cr1001645.
G. Ai, H. Li, S. Liu, R. Mo and J. Zhong, Adv. Funct. Mater., 25, 5706 (2015); https://doi.org/10.1002/adfm.201502461.
H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi and C. Li, J. Catal., 266, 165 (2009); https://doi.org/10.1016/j.jcat.2009.06.024.
F. Cao, W. Shi, L. Zhao, S. Song, J. Yang, Y. Lei and H. Zhang, J. Phys. Chem. C, 112, 17095 (2008); https://doi.org/10.1021/jp8047345.
X. Wang, G. Liu, L. Wang, Z.G. Chen, Q. Lu and H.M. Cheng, Adv. Energy Mater., 2, 42 (2012); https://doi.org/10.1002/aenm.201100528.
J. Lee, T.G. Kim, H. Choi and Y. Sung, Cryst. Growth Des., 7, 2588 (2007); https://doi.org/10.1021/cg070588m.
G. Ai, R. Mo, H. Xu, Q. Chen, S. Yang, H. Li and J. Zhong, J. Power Sources, 280, 5 (2015); https://doi.org/10.1016/j.jpowsour.2015.01.071.
K. Cheng, X. Han, J. Meng, S. Wang and Z. Du, RSC Adv., 5, 11084 (2015); https://doi.org/10.1039/C4RA15204B.
M.A. Mahadik, P.S. Shinde, M. Cho and J.S. Jang, J. Mater. Chem. A Mater. Energy Sustain., 3, 23597 (2015); https://doi.org/10.1039/C5TA07454A.
B. Liu and E.S. Aydil, J. Am. Chem. Soc., 131, 3985 (2009); https://doi.org/10.1021/ja8078972.
A. Annamalai, A. Subramanian, U. Kang, H. Park, S.H. Choi and J.S. Jang, J. Phys. Chem. C, 119, 3810 (2015); https://doi.org/10.1021/jp512189c.
M.A. Mahadik, P.S. Shinde, M. Cho and J.S. Jang, Appl. Catal. B, 184, 337 (2016); https://doi.org/10.1016/j.apcatb.2015.12.001.
W. Kim, T. Tachikawa, D. Monllor-Satoca, H. Kim, T. Majima and W. Choi, Energy Environ. Sci., 6, 3732 (2013); https://doi.org/10.1039/c3ee42151a.
E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz and J.R. Durrant, J. Am. Chem. Soc., 125, 475 (2003); https://doi.org/10.1021/ja027945w.
X. Gao, D. Guan, J. Huo, J. Chen and C. Yuan, Nanoscale, 5, 10438 (2013); https://doi.org/10.1039/c3nr03198e.
M.A. Mahadik, A. Subramanian, J. Ryu, M. Cho and J.S. Jang, Dalton Trans., 46, 2377 (2017); https://doi.org/10.1039/C6DT04472G.
M. Yin, C.-K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu and S. O’Brien, J. Am. Chem. Soc., 127, 9506 (2005); https://doi.org/10.1021/ja050006u.
A. Hameed, T. Montini, V. Gombac and P. Fornasiero, J. Am. Chem. Soc., 130, 9658 (2008); https://doi.org/10.1021/ja803603y.
M.A. Mahadik, A. Subramanian, H.S. Chung, M. Cho and J.S. Jang, ChemSusChem, 10, 2030 (2017); https://doi.org/10.1002/cssc.201700140.
P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao and D. Wu, CrystEngComm, 15, 7548 (2013); https://doi.org/10.1039/c3ce40863a.
H. Park, W. Choi and M.R. Hoffmann, J. Mater. Chem., 18, 2379 (2008); https://doi.org/10.1039/b718759a.