Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Graphene Titanium Dioxide Composites as Photocatalytic Materials for Degradation of Moderacid Black
Corresponding Author(s) : Hung Van Hoang
Asian Journal of Chemistry,
Vol. 28 No. 6 (2016): Vol 28 Issue 6
Abstract
Graphene titanium dioxide composites with different ratios of graphene to TiO2 have been successfully synthesized by a facile hydrothermal method using graphite and titanium tetrachloride as precursors. The composites were characterized by scanning electron microscope, Raman and ultraviolet-visible spectroscopies, X-ray diffraction and thermogravimetric analysis. A composite with titanium content of 20 % was revealed to be the most thermally stable in comparison to other composites, with the most uniform distribution of TiO2 on graphene sheets. The photodegradation study and thermogravimetric analysis showed that the composite with 20 % of titanium is a very stable material. After 15 times use, the photodegradation efficiency remained almost constant with the value of 99.38 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- U.M. Shahed, A.S. Mofareh and B.I. William, Science, 297, 2243 (2002); doi:10.1126/science.1075035.
- Y. Jing, L. Li, Q. Zhang, P. Lu, P. Liu and X. Lü, J. Hazard. Mater., 189, 40 (2011); doi:10.1016/j.jhazmat.2011.01.132.
- Y. Zhang, L. Fei, X. Jiang, C. Pan and Y. Wang, J. Am. Ceram. Soc., 94, 4157 (2011); doi:10.1111/j.1551-2916.2011.04905.x.
- Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, Appl. Mater. Inerfaces, 2, 2915 (2010); doi:10.1021/am100618h.
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
- S. Park and R.S. Ruoff, J. Nature Nanotech., 4, 217 (2009); doi:10.1038/nnano.2009.58.
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); doi:10.1021/nn901221k.
- X.Y. Zhang, H.P. Li, X.L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
- X. Liu, L. Pan, T. Lv and Z. Sun, J. Colloid Interf. Sci., 394, 441 (2013); doi:10.1016/j.jcis.2012.11.047.
- Y.Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen and H. Dai, Nano Res., 3, 701 (2010); doi:10.1007/s12274-010-0033-5.
- G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); doi:10.1021/nn800251f.
- D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay and J. Liu, ACS Nano, 3, 907 (2009); doi:10.1021/nn900150y.
- X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang and X. Zhang, Electrochim. Acta, 56, 9224 (2011); doi:10.1016/j.electacta.2011.07.142.
- A.V. Murugan, T. Muraliganth and A. Manthiram, Chem. Mater., 21, 5004 (2009); doi:10.1021/cm902413c.
- H. Zhao, F. Su, X. Fan, H. Yu, D. Wu and X. Quan, Chin. J. Catal., 33, 777 (2012); doi:10.1016/S1872-2067(11)60374-4.
- Y. Zhang, L. Wu, Q. Zeng and J. Zhi, J. Phys. Chem. C, 112, 16457 (2008); doi:10.1021/jp804524y.
- K. Thamaphat, P. Limsuwan and B. Ngotawornchai, Kasetsart J. (Nat. Sci.), 42, 357 (2008).
- D. Wang, X. Li, J. Chen and X. Tao, Chem. Eng. J., 198-199, 547 (2012); doi:10.1016/j.cej.2012.04.062.
- H. Zhao, F. Su, X. Fan, H. Yu, D. Wu and X. Quan, Chin. J. Catal., 33, 777 (2012); doi:10.1016/S1872-2067(11)60374-4.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.
- M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li and M. Ye, Colloids Surf. A, 405, 30 (2012); doi:10.1016/j.colsurfa.2012.04.031.
- K. Zhang, L.L. Zhang, X.S. Zhao and J. Wu, J. Chem. Mater., 22, 1392 (2010); doi:10.1021/cm902876u.
- L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras and A.M.T. Silva, Appl. Catal. B, 123-124, 241 (2012); doi:10.1016/j.apcatb.2012.04.045.
- X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun and C. Sun, Chem. Eng. J., 183, 238 (2012); doi:10.1016/j.cej.2011.12.068.
- Y. Zhang, J. Xu, Z. Sun, C. Li and C. Pan, Prog. Nat. Sci. Mater. Inter., 21, 467 (2011); doi:10.1016/S1002-0071(12)60084-7.
- H. Gao, W. Chen, J. Yuan, Z. Jiang, G. Hu, W. Shangguan, Y. Sun and J. Su, Int. J. Hydrogen Energy, 38, 13110 (2013); doi:10.1016/j.ijhydene.2013.01.155.
- A. Piscopo, D. Robert and J.V. Weber, Appl. Catal. B, 35, 117 (2001); doi:10.1016/S0926-3373(01)00244-2.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
References
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
U.M. Shahed, A.S. Mofareh and B.I. William, Science, 297, 2243 (2002); doi:10.1126/science.1075035.
Y. Jing, L. Li, Q. Zhang, P. Lu, P. Liu and X. Lü, J. Hazard. Mater., 189, 40 (2011); doi:10.1016/j.jhazmat.2011.01.132.
Y. Zhang, L. Fei, X. Jiang, C. Pan and Y. Wang, J. Am. Ceram. Soc., 94, 4157 (2011); doi:10.1111/j.1551-2916.2011.04905.x.
Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, Appl. Mater. Inerfaces, 2, 2915 (2010); doi:10.1021/am100618h.
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
S. Park and R.S. Ruoff, J. Nature Nanotech., 4, 217 (2009); doi:10.1038/nnano.2009.58.
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); doi:10.1021/nn901221k.
X.Y. Zhang, H.P. Li, X.L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
X. Liu, L. Pan, T. Lv and Z. Sun, J. Colloid Interf. Sci., 394, 441 (2013); doi:10.1016/j.jcis.2012.11.047.
Y.Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen and H. Dai, Nano Res., 3, 701 (2010); doi:10.1007/s12274-010-0033-5.
G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); doi:10.1021/nn800251f.
D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay and J. Liu, ACS Nano, 3, 907 (2009); doi:10.1021/nn900150y.
X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang and X. Zhang, Electrochim. Acta, 56, 9224 (2011); doi:10.1016/j.electacta.2011.07.142.
A.V. Murugan, T. Muraliganth and A. Manthiram, Chem. Mater., 21, 5004 (2009); doi:10.1021/cm902413c.
H. Zhao, F. Su, X. Fan, H. Yu, D. Wu and X. Quan, Chin. J. Catal., 33, 777 (2012); doi:10.1016/S1872-2067(11)60374-4.
Y. Zhang, L. Wu, Q. Zeng and J. Zhi, J. Phys. Chem. C, 112, 16457 (2008); doi:10.1021/jp804524y.
K. Thamaphat, P. Limsuwan and B. Ngotawornchai, Kasetsart J. (Nat. Sci.), 42, 357 (2008).
D. Wang, X. Li, J. Chen and X. Tao, Chem. Eng. J., 198-199, 547 (2012); doi:10.1016/j.cej.2012.04.062.
H. Zhao, F. Su, X. Fan, H. Yu, D. Wu and X. Quan, Chin. J. Catal., 33, 777 (2012); doi:10.1016/S1872-2067(11)60374-4.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.
M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li and M. Ye, Colloids Surf. A, 405, 30 (2012); doi:10.1016/j.colsurfa.2012.04.031.
K. Zhang, L.L. Zhang, X.S. Zhao and J. Wu, J. Chem. Mater., 22, 1392 (2010); doi:10.1021/cm902876u.
L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras and A.M.T. Silva, Appl. Catal. B, 123-124, 241 (2012); doi:10.1016/j.apcatb.2012.04.045.
X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun and C. Sun, Chem. Eng. J., 183, 238 (2012); doi:10.1016/j.cej.2011.12.068.
Y. Zhang, J. Xu, Z. Sun, C. Li and C. Pan, Prog. Nat. Sci. Mater. Inter., 21, 467 (2011); doi:10.1016/S1002-0071(12)60084-7.
H. Gao, W. Chen, J. Yuan, Z. Jiang, G. Hu, W. Shangguan, Y. Sun and J. Su, Int. J. Hydrogen Energy, 38, 13110 (2013); doi:10.1016/j.ijhydene.2013.01.155.
A. Piscopo, D. Robert and J.V. Weber, Appl. Catal. B, 35, 117 (2001); doi:10.1016/S0926-3373(01)00244-2.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.